module Cubical.Relation.Binary.Order.Toset.Instances.Nat where open import Cubical.Foundations.Prelude open import Cubical.Data.Sum open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Nat open import Cubical.Data.Nat.Order renaming (_≤_ to _≤ℕ_) open import Cubical.Relation.Binary.Order.Toset open TosetStr ℕ≤Toset : Toset ℓ-zero ℓ-zero fst ℕ≤Toset = ℕ _≤_ (snd ℕ≤Toset) = _≤ℕ_ isToset (snd ℕ≤Toset) = isTosetℕ≤ where open IsToset abstract isTosetℕ≤ : IsToset _≤ℕ_ isTosetℕ≤ .is-set = isSetℕ isTosetℕ≤ .is-prop-valued = λ _ _ → isProp≤ isTosetℕ≤ .is-refl = λ _ → ≤-refl isTosetℕ≤ .is-trans = λ _ _ _ → ≤-trans isTosetℕ≤ .is-antisym = λ _ _ → ≤-antisym isTosetℕ≤ .is-total a b with splitℕ-≤ a b ... | inl a≤b = ∣ inl a≤b ∣₁ ... | inr b<a = ∣ inr (<-weaken b<a) ∣₁