{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Order.Poset.Interval where
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Functions.Embedding
open import Cubical.Functions.Fibration
open import Cubical.Data.Bool as B using (Bool; true; false)
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Order.Poset.Base
open import Cubical.Relation.Binary.Order.Poset.Properties
open import Cubical.Relation.Binary.Order.Poset.Subset
open import Cubical.Reflection.RecordEquiv
private variable
  ℓ ℓ' : Level
module _ (P' : Poset ℓ ℓ') where
  private P = ⟨ P' ⟩
  open PosetStr (snd P')
  module _ (x y : P) where
    
    record Interval : Type (ℓ-max ℓ ℓ') where
      constructor interval
      field
        z : P
        x≤z : x ≤ z
        z≤y : z ≤ y
    unquoteDecl IntervalIsoΣ = declareRecordIsoΣ IntervalIsoΣ (quote Interval)
    isSetInterval : isSet Interval
    isSetInterval = isOfHLevelRetractFromIso 2 IntervalIsoΣ $
      isSetΣSndProp is-set λ _ → isProp× (is-prop-valued _ _) (is-prop-valued _ _)
    Interval↪ : Interval ↪ P
    Interval↪ = compEmbedding (EmbeddingΣProp λ _ → isProp× (is-prop-valued _ _) (is-prop-valued _ _)) (Iso→Embedding IntervalIsoΣ)
    IntervalEmbedding : Embedding P (ℓ-max ℓ ℓ')
    IntervalEmbedding = Interval , Interval↪
    IntervalPosetStr : PosetStr ℓ' Interval
    IntervalPosetStr = posetstr _ (isPosetInduced isPoset Interval Interval↪)
    IntervalPoset : Poset (ℓ-max ℓ ℓ') ℓ'
    IntervalPoset = Interval , IntervalPosetStr
    Interval≡ : ∀ i j → i .Interval.z ≡ j .Interval.z → i ≡ j
    Interval≡ _ _ = isoFunInjective IntervalIsoΣ _ _ ∘ Σ≡Prop (λ _ → isProp× (is-prop-valued _ _) (is-prop-valued _ _))
    module _ (x≤y : x ≤ y) where
      intervalTop : Interval
      intervalTop = interval y x≤y (is-refl y)
      intervalBot : Interval
      intervalBot = interval x (is-refl x) x≤y
      2→Interval : Bool → Interval
      2→Interval false = intervalBot
      2→Interval true  = intervalTop