{-# OPTIONS --safe #-}
module Cubical.HITs.Nullification.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.PathSplit
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Modalities.Modality
open import Cubical.Functions.FunExtEquiv
open import Cubical.HITs.Localization renaming (rec to Localize-rec)
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ; zero; suc)
open import Cubical.HITs.Nullification.Base
open Modality
open isPathSplitEquiv
private
variable
ℓα ℓs ℓ ℓ' : Level
A : Type ℓα
S : A → Type ℓs
X : Type ℓ
isNull≡ : (nX : isNull S X) {x y : X} → isNull S (x ≡ y)
isNull≡ nX α =
fromIsEquiv (λ p _ i → p i)
(isEquiv[equivFunA≃B∘f]→isEquiv[f] (λ p _ → p) funExtEquiv (isEquivCong (const , toIsEquiv _ (nX α))))
isNullΠ : {Y : X → Type ℓ'} → ((x : X) → isNull S (Y x)) → isNull S ((x : X) → Y x)
isNullΠ {X = X} {S = S} {Y = Y} nY α = fromIsEquiv _ (snd e)
where
flipIso : Iso ((x : X) → S α → Y x) (S α → (x : X) → Y x)
Iso.fun flipIso f = flip f
Iso.inv flipIso f = flip f
Iso.rightInv flipIso f = refl
Iso.leftInv flipIso f = refl
e : ((x : X) → Y x) ≃ (S α → ((x : X) → Y x))
e =
((x : X) → Y x)
≃⟨ equivΠCod (λ x → const , (toIsEquiv _ (nY x α))) ⟩
((x : X) → (S α → Y x))
≃⟨ isoToEquiv flipIso ⟩
(S α → ((x : X) → Y x))
■
isNullΣ : {Y : X → Type ℓ'} → (isNull S X) → ((x : X) → isNull S (Y x)) →
isNull S (Σ X Y)
isNullΣ {X = X} {S = S} {Y = Y} nX nY α = fromIsEquiv _ (snd e)
where
e : Σ X Y ≃ (S α → Σ X Y)
e =
Σ X Y
≃⟨ Σ-cong-equiv-snd (λ x → pathSplitToEquiv (_ , (nY x α))) ⟩
Σ[ x ∈ X ] (S α → Y x)
≃⟨ Σ-cong-equiv-fst (pathSplitToEquiv (_ , (nX α))) ⟩
Σ[ f ∈ (S α → X) ] ((z : S α) → Y (f z))
≃⟨ isoToEquiv (invIso Σ-Π-Iso) ⟩
(S α → Σ X Y)
■
equivPreservesIsNull : {Y : Type ℓ'} → (e : X ≃ Y) → (isNull S X) → isNull S Y
equivPreservesIsNull e nullX α =
fromIsEquiv _
(isEquiv[f∘equivFunA≃B]→isEquiv[f]
(λ y _ → y) e
(snd (compEquiv (pathSplitToEquiv ((λ x _ → x) , (nullX α))) (postCompEquiv e))))
rec : {Y : Type ℓ'} → (nB : isNull S Y) → (X → Y) → Null S X → Y
rec nB g ∣ x ∣ = g x
rec nB g (hub α f) = fst (sec (nB α)) (λ s → rec nB g (f s))
rec nB g (spoke α f s i) = snd (sec (nB α)) (λ s → rec nB g (f s)) i s
rec nB g (≡hub {x} {y} {α} p i) = fst (secCong (nB α) (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i
rec nB g (≡spoke {x} {y} {α} p s i j) = snd (secCong (nB α) (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i j s
toPathP⁻ : (A : I → Type ℓ) {x : A i0} {y : A i1} → x ≡ transport⁻ (λ i → A i) y → PathP A x y
toPathP⁻ A p i = toPathP {A = λ i → A (~ i)} (sym p) (~ i)
toPathP⁻-sq : ∀ {ℓ} {A : Type ℓ} (x : A) → Square (toPathP⁻ (λ _ → A) (λ _ → transport refl x)) refl
(transportRefl x) refl
toPathP⁻-sq x j i = hcomp (λ l → λ { (i = i0) → transportRefl x j
; (i = i1) → x ; (j = i1) → x })
(transportRefl x (i ∨ j))
module _ {Y : Null S X → Type ℓ'} where
private
secCongDep' : ∀ (nY : (x : Null S X) → isNull S (Y x)) {x y : Null S X} {α} (p : x ≡ y)
→ (∀ (bx : Y x) (by : Y y) → hasSection (cong₂ (λ x (b : Y x) (_ : S α) → b) p))
secCongDep' nY {α = α} p = secCongDep (λ _ → const) p (λ a → secCong (nY a α))
elim : (nY : (x : Null S X) → isNull S (Y x)) → ((a : X) → Y ∣ a ∣) → (x : Null S X) → Y x
elim nY g ∣ x ∣ = g x
elim nY g (hub α f)
= fst (sec (nY (hub α f) α))
(λ s → transport (λ i → Y (spoke α f s (~ i))) (elim nY g (f s)))
elim nY g (spoke α f s i)
= toPathP⁻ (λ i → Y (spoke α f s i))
(funExt⁻ ( snd (sec (nY (hub α f) α))
(λ s → transport (λ i → Y (spoke α f s (~ i))) (elim nY g (f s))) ) s) i
elim nY g (≡hub {x} {y} p i)
= hcomp (λ k → λ { (i = i0) → transportRefl (elim nY g x) k
; (i = i1) → transportRefl (elim nY g y) k })
(fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y)))
(λ i s → transport (λ j → Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) i)
elim nY g (≡spoke {x} {y} p s j i)
= hcomp (λ k → λ { (i = i0) → toPathP⁻-sq (elim nY g x) k j
; (i = i1) → toPathP⁻-sq (elim nY g y) k j
; (j = i1) → elim nY g (p s i) })
(q₂ j i)
where q₁ : Path (PathP (λ i → Y (≡hub p i)) (transport refl (elim nY g x)) (transport refl (elim nY g y)))
(fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y)))
(λ i s → transport (λ j → Y (≡spoke p s (~ j) i)) (elim nY g (p s i))))
(λ i → transport (λ j → Y (≡spoke p s (~ j) i)) (elim nY g (p s i)))
q₁ j i = snd (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y)))
(λ i s → transport (λ j → Y (≡spoke p s (~ j) i)) (elim nY g (p s i))) j i s
q₂ : PathP (λ j → PathP (λ i → Y (≡spoke p s j i)) (toPathP⁻ (λ _ → Y x) (λ _ → transport refl (elim nY g x)) j)
(toPathP⁻ (λ _ → Y y) (λ _ → transport refl (elim nY g y)) j))
(fst (secCongDep' nY (≡hub p) (transport refl (elim nY g x)) (transport refl (elim nY g y)))
(λ i s → transport (λ j → Y (≡spoke p s (~ j) i)) (elim nY g (p s i))))
(λ i → elim nY g (p s i))
q₂ j i = toPathP⁻ (λ j → Y (≡spoke p s j i)) (λ j → q₁ j i) j
NullRecIsPathSplitEquiv : {Y : Type ℓ'} → (isNull S Y) → isPathSplitEquiv {A = (Null S X) → Y} (λ f → f ∘ ∣_∣)
sec (NullRecIsPathSplitEquiv nY) = rec nY , λ _ → refl
secCong (NullRecIsPathSplitEquiv nY) f f' = (λ p → funExt (elim (λ _ → isNull≡ nY) (funExt⁻ p))) , λ _ → refl
NullRecIsEquiv : {Y : Type ℓ'} → (isNull S Y) → isEquiv {A = (Null S X) → Y} (λ f → f ∘ ∣_∣)
NullRecIsEquiv nY = toIsEquiv _ (NullRecIsPathSplitEquiv nY)
NullRecEquiv : {Y : Type ℓ'} → (isNull S Y) → ((Null S X) → Y) ≃ (X → Y)
NullRecEquiv nY = (λ f → f ∘ ∣_∣) , (NullRecIsEquiv nY)
NullPreservesProp : isProp X → isProp (Null S X)
NullPreservesProp {S = S} pX u = elim (λ v' → isNull≡ (isNull-Null S))
(λ y → elim (λ u' → isNull≡ (isNull-Null S) {x = u'}) (λ x → cong ∣_∣ (pX x y)) u)
NullPreservesContr : isContr X → isContr (Null S X)
NullPreservesContr l = inhProp→isContr ∣ fst l ∣ (NullPreservesProp (isContr→isProp l))
isPropIsNull : isProp (isNull S X)
isPropIsNull = isPropΠ (λ _ → isPropIsPathSplitEquiv _)
isNullIsContr : isNull S X → isNull S (isContr X)
isNullIsContr nullX = isNullΣ nullX λ _ → isNullΠ (λ _ → isNull≡ nullX)
isNullIsEquiv :
{Y : Type ℓ'} (nullX : isNull S X)
(nullY : isNull S Y) (f : X → Y) → isNull S (isEquiv f)
isNullIsEquiv nullX nullY f =
equivPreservesIsNull (invEquiv (isEquiv≃isEquiv' f))
(isNullΠ λ _ → isNullIsContr (isNullΣ nullX λ _ → isNull≡ nullY))
isNullEquiv :
∀ {ℓα ℓs ℓ} {A : Type ℓα} {S : A → Type ℓs}
{X Y : Type ℓ} → isNull S X → isNull S Y → isNull S (X ≃ Y)
isNullEquiv nullX nullY = isNullΣ (isNullΠ (λ _ → nullY)) (isNullIsEquiv nullX nullY)
isNullIsOfHLevel : (n : HLevel) → isNull S X → isNull S (isOfHLevel n X)
isNullIsOfHLevel zero nullX = isNullIsContr nullX
isNullIsOfHLevel (suc zero) nullX = isNullΠ (λ _ → isNullΠ (λ _ → isNull≡ nullX))
isNullIsOfHLevel (suc (suc n)) nullX =
isNullΠ (λ _ → isNullΠ (λ _ → isNullIsOfHLevel (suc n) (isNull≡ nullX)))
NullModality : {A : Type ℓα} (S : A → Type ℓs) → Modality (ℓ-max ℓ (ℓ-max ℓα ℓs))
isModal (NullModality S) = isNull S
isPropIsModal (NullModality S) = isPropΠ (λ α → isPropIsPathSplitEquiv _)
◯ (NullModality S) = Null S
◯-isModal (NullModality S) = isNull-Null S
η (NullModality S) = ∣_∣
◯-elim (NullModality S) = elim
◯-elim-β (NullModality S) = λ _ _ _ → refl
◯-=-isModal (NullModality S) x y α = fromIsEquiv _ e
where e : isEquiv (λ (p : x ≡ y) → const {B = S α} p)
e = transport (λ i → isEquiv {B = funExtPath {A = S α} {f = const x} {g = const y} (~ i)}
(λ p → ua-gluePath funExtEquiv {x = const p} {y = cong const p} refl (~ i)))
(isEquivCong (_ , toIsEquiv _ (isNull-Null S α)))
idemNull : ∀ {ℓa ℓs ℓ} {A : Type ℓa} (S : A → Type ℓs) (X : Type (ℓ-max ℓ (ℓ-max ℓa ℓs))) → isNull S X → X ≃ Null S X
idemNull {ℓ = ℓ} S A nA = ∣_∣ , isModalToIsEquiv (NullModality {ℓ = ℓ} S) nA
module Null-iso-Localize (S : A → Type ℓs) (X : Type ℓ) where
to : Null S X → Localize {A = A} (λ α → const {B = S α} tt) X
to ∣ x ∣ = ∣ x ∣
to (hub α f) = ext α (to ∘ f) tt
to (spoke α f s i) = isExt α (to ∘ f) s i
to (≡hub {x} {y} {α} p i) = ≡ext α (const (to x)) (const (to y)) (cong to ∘ p) tt i
to (≡spoke {x} {y} {α} p s i j) = ≡isExt α (const (to x)) (const (to y)) (cong to ∘ p) s i j
from : Localize {A = A} (λ α → const {B = S α} tt) X → Null S X
from ∣ x ∣ = ∣ x ∣
from (ext α f tt) = hub α (from ∘ f)
from (isExt α f s i) = spoke α (from ∘ f) s i
from (≡ext α g h p tt i) = ≡hub {x = from (g tt)} {from (h tt)} (cong from ∘ p) i
from (≡isExt α g h p s i j) = ≡spoke {x = from (g tt)} {from (h tt)} (cong from ∘ p) s i j
to-from : ∀ (x : Localize {A = A} (λ α → const {B = S α} tt) X) → to (from x) ≡ x
to-from ∣ x ∣ k = ∣ x ∣
to-from (ext α f tt) k = ext α (λ s → to-from (f s) k) tt
to-from (isExt α f s i) k = isExt α (λ s → to-from (f s) k) s i
to-from (≡ext α g h p tt i) k = ≡ext α (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) tt i
to-from (≡isExt α g h p s i j) k = ≡isExt α (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) s i j
from-to : ∀ (x : Null S X) → from (to x) ≡ x
from-to ∣ x ∣ k = ∣ x ∣
from-to (hub α f) k = hub α (λ s → from-to (f s) k)
from-to (spoke α f s i) k = spoke α (λ s → from-to (f s) k) s i
from-to (≡hub {x} {y} p i) k = ≡hub {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) i
from-to (≡spoke {x} {y} p s i j) k = ≡spoke {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) s i j
isom : Iso (Null S X) (Localize {A = A} (λ α → const {B = S α} tt) X)
isom = iso to from to-from from-to
Null≃Localize : (S : A → Type ℓs) (X : Type ℓ) → Null S X ≃ Localize (λ α → const {B = S α} tt) X
Null≃Localize S X = isoToEquiv (Null-iso-Localize.isom S X)
SeparatedAndInjective→Null :
(X : Type ℓ) (sep : (x y : X) → isNull S (x ≡ y))
(inj : (α : A) → hasSection (const {A = X} {B = S α})) →
isNull S X
sec (SeparatedAndInjective→Null X sep inj α) = inj α
secCong (SeparatedAndInjective→Null X sep inj α) x y =
fst s ∘ funExt⁻ , λ p i j α → snd s (funExt⁻ p) i α j
where
s = sec (sep x y α)