{-# OPTIONS --safe #-}
module Cubical.HITs.Nullification.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv.PathSplit
open isPathSplitEquiv
module _ {ℓα ℓs} {A : Type ℓα} (S : A → Type ℓs) where
isNull : ∀ {ℓ} (X : Type ℓ) → Type (ℓ-max (ℓ-max ℓα ℓs) ℓ)
isNull X = (α : A) → isPathSplitEquiv (const {A = X} {B = S α})
data Null {ℓ} (X : Type ℓ) : Type (ℓ-max (ℓ-max ℓα ℓs) ℓ) where
∣_∣ : X → Null X
hub : (α : A) → (f : (S α) → Null X) → Null X
spoke : (α : A) → (f : (S α) → Null X) (s : S α) → hub α f ≡ f s
≡hub : ∀ {x y} {α} (p : S α → x ≡ y) → x ≡ y
≡spoke : ∀ {x y} {α} (p : S α → x ≡ y) (s : S α) → ≡hub p ≡ p s
isNull-Null : ∀ {ℓ} {X : Type ℓ} → isNull (Null X)
fst (sec (isNull-Null α)) f = hub α f
snd (sec (isNull-Null α)) f i s = spoke α f s i
fst (secCong (isNull-Null α) x y) p i = ≡hub (funExt⁻ p) i
snd (secCong (isNull-Null α) x y) p i j s = ≡spoke (funExt⁻ p) s i j