{-# OPTIONS --safe --lossy-unification #-} module Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+n_) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.GradedRing.DirectSumFun private variable ℓ : Level module _ (ACommRing@(A , Astr) : CommRing ℓ) where open CommRingStr Astr open RingTheory (CommRing→Ring ACommRing) UnivariatePolyFun-CommRing : CommRing ℓ UnivariatePolyFun-CommRing = ⊕FunGradedRing-CommRing _+n_ (makeIsMonoid isSetℕ +-assoc +-zero λ _ → refl) (λ _ _ → refl) (λ _ → A) (λ _ → snd (Ring→AbGroup (CommRing→Ring ACommRing))) 1r _·_ 0LeftAnnihilates 0RightAnnihilates (λ a b c → ΣPathP ((+-assoc _ _ _) , (·Assoc _ _ _))) (λ a → ΣPathP ((+-zero _) , (·IdR _))) (λ a → ΣPathP (refl , (·IdL _))) ·DistR+ ·DistL+ λ x y → ΣPathP ((+-comm _ _) , (·Comm _ _)) nUnivariatePolyFun : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ nUnivariatePolyFun A' zero = A' nUnivariatePolyFun A' (suc n) = UnivariatePolyFun-CommRing (nUnivariatePolyFun A' n)