{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun where

open import Cubical.Foundations.Prelude

open import Cubical.Data.Empty as 
open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+n_)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Sigma

open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.GradedRing.DirectSumFun

private variable
   : Level

module _
  (ACommRing@(A , Astr) : CommRing )
  where

  open CommRingStr Astr
  open RingTheory (CommRing→Ring ACommRing)

  UnivariatePolyFun-CommRing : CommRing 
  UnivariatePolyFun-CommRing = ⊕FunGradedRing-CommRing
                   _+n_ (makeIsMonoid isSetℕ +-assoc +-zero λ _  refl)  _ _  refl)
                    _  A)
                    _  snd (Ring→AbGroup (CommRing→Ring ACommRing)))
                   1r _·_ 0LeftAnnihilates 0RightAnnihilates
                    a b c  ΣPathP ((+-assoc _ _ _) , (·Assoc _ _ _)))
                    a  ΣPathP ((+-zero _) , (·IdR _)))
                    a  ΣPathP (refl , (·IdL _)))
                   ·DistR+
                   ·DistL+
                   λ x y  ΣPathP ((+-comm _ _) , (·Comm _ _))

nUnivariatePolyFun : (A' : CommRing )  (n : )  CommRing 
nUnivariatePolyFun A' zero = A'
nUnivariatePolyFun A' (suc n) = UnivariatePolyFun-CommRing (nUnivariatePolyFun A' n)