{-# OPTIONS --cubical-compatible --safe #-}
module Algebra.Module.Bundles where
open import Algebra.Bundles
open import Algebra.Core
open import Algebra.Definitions using (Involutive)
open import Algebra.Module.Core
open import Algebra.Module.Structures
open import Algebra.Module.Definitions
open import Algebra.Properties.Group
open import Function.Base
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (¬_)
import Relation.Binary.Reasoning.Setoid as SetR
private
variable
r ℓr s ℓs : Level
record LeftSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isLeftSemimodule : IsLeftSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_
infix 4 _≉ᴹ_
_≉ᴹ_ : Rel Carrierᴹ _
a ≉ᴹ b = ¬ (a ≈ᴹ b)
open IsLeftSemimodule isLeftSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
)
record LeftModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isLeftModule : IsLeftModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_
open IsLeftModule isLeftModule public
leftSemimodule : LeftSemimodule semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; _≉ᴹ_)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group; rawGroup to +ᴹ-rawGroup)
record RightSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isRightSemimodule : IsRightSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ᵣ_
infix 4 _≉ᴹ_
_≉ᴹ_ : Rel Carrierᴹ _
a ≉ᴹ b = ¬ (a ≈ᴹ b)
open IsRightSemimodule isRightSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
)
record RightModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isRightModule : IsRightModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ᵣ_
open IsRightModule isRightModule public
rightSemimodule : RightSemimodule semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open RightSemimodule rightSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; _≉ᴹ_)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group; rawGroup to +ᴹ-rawGroup)
record Bisemimodule (R-semiring : Semiring r ℓr) (S-semiring : Semiring s ℓs)
m ℓm : Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Semiring R-semiring
module S = Semiring S-semiring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isBisemimodule : IsBisemimodule R-semiring S-semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsBisemimodule isBisemimodule public
leftSemimodule : LeftSemimodule R-semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
rightSemimodule : RightSemimodule S-semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma
; +ᴹ-rawMonoid; _≉ᴹ_)
record Bimodule (R-ring : Ring r ℓr) (S-ring : Ring s ℓs) m ℓm
: Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Ring R-ring
module S = Ring S-ring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isBimodule : IsBimodule R-ring S-ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsBimodule isBimodule public
leftModule : LeftModule R-ring m ℓm
leftModule = record { isLeftModule = isLeftModule }
rightModule : RightModule S-ring m ℓm
rightModule = record { isRightModule = isRightModule }
open LeftModule leftModule public
using ( +ᴹ-abelianGroup; +ᴹ-commutativeMonoid; +ᴹ-group; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma; +ᴹ-rawMonoid; +ᴹ-rawGroup
; _≉ᴹ_)
bisemimodule : Bisemimodule R.semiring S.semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using (leftSemimodule; rightSemimodule)
record Semimodule (commutativeSemiring : CommutativeSemiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeSemiring commutativeSemiring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isSemimodule : IsSemimodule commutativeSemiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsSemimodule isSemimodule public
private
module L = LeftDefs Carrier _≈ᴹ_
module R = RightDefs Carrier _≈ᴹ_
bisemimodule : Bisemimodule semiring semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using ( leftSemimodule; rightSemimodule
; +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; _≉ᴹ_)
open SetR ≈ᴹ-setoid
*ₗ-comm : L.Commutative _*ₗ_
*ₗ-comm x y m = begin
x *ₗ y *ₗ m ≈⟨ ≈ᴹ-sym (*ₗ-assoc x y m) ⟩
(x * y) *ₗ m ≈⟨ *ₗ-cong (*-comm _ _) ≈ᴹ-refl ⟩
(y * x) *ₗ m ≈⟨ *ₗ-assoc y x m ⟩
y *ₗ x *ₗ m ∎
*ᵣ-comm : R.Commutative _*ᵣ_
*ᵣ-comm m x y = begin
m *ᵣ x *ᵣ y ≈⟨ *ᵣ-assoc m x y ⟩
m *ᵣ (x * y) ≈⟨ *ᵣ-cong ≈ᴹ-refl (*-comm _ _) ⟩
m *ᵣ (y * x) ≈⟨ ≈ᴹ-sym (*ᵣ-assoc m y x) ⟩
m *ᵣ y *ᵣ x ∎
record Module (commutativeRing : CommutativeRing r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeRing commutativeRing
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isModule : IsModule commutativeRing _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsModule isModule public
bimodule : Bimodule ring ring m ℓm
bimodule = record { isBimodule = isBimodule }
open Bimodule bimodule public
using ( leftModule; rightModule; leftSemimodule; rightSemimodule
; +ᴹ-abelianGroup; +ᴹ-group; +ᴹ-commutativeMonoid; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMonoid; +ᴹ-rawMagma
; +ᴹ-rawGroup; _≉ᴹ_)
semimodule : Semimodule commutativeSemiring m ℓm
semimodule = record { isSemimodule = isSemimodule }
open Semimodule semimodule public using (*ₗ-comm; *ᵣ-comm)