{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Core
using (Rel; _Preserves_⟶_; _Preserves₂_⟶_⟶_)
module Algebra.Module.Definitions.Right
{a b ℓb} (A : Set a) {B : Set b} (_≈_ : Rel B ℓb)
where
open import Algebra.Core
open import Algebra.Module.Core
RightIdentity : A → Opᵣ A B → Set _
RightIdentity a _∙ᴮ_ = ∀ m → (m ∙ᴮ a) ≈ m
Associative : Op₂ A → Opᵣ A B → Set _
Associative _∙ᴬ_ _∙ᴮ_ = ∀ m x y → ((m ∙ᴮ x) ∙ᴮ y) ≈ (m ∙ᴮ (x ∙ᴬ y))
_DistributesOverˡ_⟶_ : Opᵣ A B → Op₂ A → Op₂ B → Set _
_*_ DistributesOverˡ _+ᴬ_ ⟶ _+ᴮ_ =
∀ m x y → (m * (x +ᴬ y)) ≈ ((m * x) +ᴮ (m * y))
_DistributesOverʳ_ : Opᵣ A B → Op₂ B → Set _
_*_ DistributesOverʳ _+_ =
∀ x m n → ((m + n) * x) ≈ ((m * x) + (n * x))
LeftZero : B → Opᵣ A B → Set _
LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z
RightZero : A → B → Opᵣ A B → Set _
RightZero zᴬ zᴮ _∙_ = ∀ x → (x ∙ zᴬ) ≈ zᴮ
Commutative : Opᵣ A B → Set _
Commutative _∙_ = ∀ m x y → ((m ∙ x) ∙ y) ≈ ((m ∙ y) ∙ x)
LeftCongruent : ∀ {ℓa} → Rel A ℓa → Opᵣ A B → Set _
LeftCongruent ≈ᴬ _∙_ = ∀ {m} → (m ∙_) Preserves ≈ᴬ ⟶ _≈_
RightCongruent : Opᵣ A B → Set _
RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_
Congruent : ∀ {ℓa} → Rel A ℓa → Opᵣ A B → Set _
Congruent ≈ᴬ ∙ = ∙ Preserves₂ _≈_ ⟶ ≈ᴬ ⟶ _≈_