------------------------------------------------------------------------
-- The Agda standard library
--
-- Example of a Quotient: ℤ as (ℕ × ℕ / ~)
------------------------------------------------------------------------

module Relation.Binary.HeterogeneousEquality.Quotients.Examples where

open import Relation.Binary.HeterogeneousEquality.Quotients
open import Level as L hiding (lift)
open import Relation.Binary
open import Relation.Binary.HeterogeneousEquality hiding (isEquivalence)
import Relation.Binary.PropositionalEquality as 
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product
open import Function
open ≅-Reasoning

ℕ² =  × 

_∼_ : ℕ²  ℕ²  Set
(x , y)  (x' , y') = x + y'  x' + y

infix 10 _∼_

∼-trans :  {i j k}  i  j  j  k  i  k
∼-trans {x₁ , y₁} {x₂ , y₂} {x₃ , y₃} p q =
  ≡-to-≅ $ +-cancelˡ-≡ y₂ $ ≅-to-≡ $ begin
  y₂ + (x₁ + y₃) ≡⟨ ≡.sym (+-assoc y₂ x₁ y₃) 
  y₂ + x₁ + y₃   ≡⟨ ≡.cong (_+ y₃) (+-comm y₂ x₁) 
  x₁ + y₂ + y₃   ≅⟨ cong (_+ y₃) p 
  x₂ + y₁ + y₃   ≡⟨ ≡.cong (_+ y₃) (+-comm x₂ y₁) 
  y₁ + x₂ + y₃   ≡⟨ +-assoc y₁ x₂ y₃ 
  y₁ + (x₂ + y₃) ≅⟨ cong (y₁ +_) q 
  y₁ + (x₃ + y₂) ≡⟨ +-comm y₁ (x₃ + y₂) 
  x₃ + y₂ + y₁   ≡⟨ ≡.cong (_+ y₁) (+-comm x₃ y₂) 
  y₂ + x₃ + y₁   ≡⟨ +-assoc y₂ x₃ y₁ 
  y₂ + (x₃ + y₁) 

~-isEquivalence : IsEquivalence _∼_
~-isEquivalence = record
  { refl  = refl
  ; sym   = sym
  ; trans = λ {i} {j} {k}  ∼-trans {i} {j} {k}
  }

ℕ²-∼-setoid : Setoid L.zero L.zero
ℕ²-∼-setoid = record { isEquivalence = ~-isEquivalence }

module Integers (quot : Quotients L.zero L.zero) where

  Int : Quotient ℕ²-∼-setoid
  Int = quot _

  open Quotient Int renaming (Q to)

  _+²_ : ℕ²  ℕ²  ℕ²
  (x₁ , y₁)  (x₂ , y₂) = x₁ + x₂ , y₁ + y₂

  +²-cong : ∀{a b a' b'}  a  a'  b  b'  a  b  a'  b'
  +²-cong {a₁ , b₁} {c₁ , d₁} {a₂ , b₂} {c₂ , d₂} ab~cd₁ ab~cd₂ = begin
    (a₁ + c₁) + (b₂ + d₂) ≡⟨ ≡.cong (_+ (b₂ + d₂)) (+-comm a₁ c₁) 
    (c₁ + a₁) + (b₂ + d₂) ≡⟨ +-assoc c₁ a₁ (b₂ + d₂) 
    c₁ + (a₁ + (b₂ + d₂)) ≡⟨ ≡.cong (c₁ +_) (≡.sym (+-assoc a₁ b₂ d₂)) 
    c₁ + (a₁ + b₂ + d₂)   ≅⟨ cong  n  c₁ + (n + d₂)) ab~cd₁ 
    c₁ + (a₂ + b₁ + d₂)   ≡⟨ ≡.cong (c₁ +_) (+-assoc a₂ b₁ d₂) 
    c₁ + (a₂ + (b₁ + d₂)) ≡⟨ ≡.cong  n  c₁ + (a₂ + n)) (+-comm b₁ d₂) 
    c₁ + (a₂ + (d₂ + b₁)) ≡⟨ ≡.sym (+-assoc c₁ a₂ (d₂ + b₁)) 
    (c₁ + a₂) + (d₂ + b₁) ≡⟨ ≡.cong (_+ (d₂ + b₁)) (+-comm c₁ a₂) 
    (a₂ + c₁) + (d₂ + b₁) ≡⟨ +-assoc a₂ c₁ (d₂ + b₁) 
    a₂ + (c₁ + (d₂ + b₁)) ≡⟨ ≡.cong (a₂ +_) (≡.sym (+-assoc c₁ d₂ b₁)) 
    a₂ + (c₁ + d₂ + b₁)   ≅⟨ cong  n  a₂ + (n + b₁)) ab~cd₂ 
    a₂ + (c₂ + d₁ + b₁)   ≡⟨ ≡.cong (a₂ +_) (+-assoc c₂ d₁ b₁) 
    a₂ + (c₂ + (d₁ + b₁)) ≡⟨ ≡.cong  n  a₂ + (c₂ + n)) (+-comm d₁ b₁) 
    a₂ + (c₂ + (b₁ + d₁)) ≡⟨ ≡.sym (+-assoc a₂ c₂ (b₁ + d₁)) 
    (a₂ + c₂) + (b₁ + d₁) 

  module _ (ext :  {a b} {A : Set a} {B₁ B₂ : A  Set b} {f₁ :  a  B₁ a}
                  {f₂ :  a  B₂ a}  (∀ a  f₁ a  f₂ a)  f₁  f₂) where

    _+ℤ_ :     
    _+ℤ_ = Properties₂.lift₂ ext Int Int  i j  abs (i  j))
         $ λ {a} {b} {c} p p'  compat-abs (+²-cong {a} {b} {c} p p')

    zero² : ℕ²
    zero² = 0 , 0

    zeroℤ : 
    zeroℤ = abs zero²

    +²-identityʳ : (i : ℕ²)  (i  zero²)  i
    +²-identityʳ (x , y) = begin
      (x + 0) + y ≡⟨ ≡.cong (_+ y) (+-identityʳ x) 
      x + y       ≡⟨ ≡.cong (x +_) (≡.sym (+-identityʳ y)) 
      x + (y + 0) 

    +ℤ-on-abs≅abs-+₂ :  a b  abs a +ℤ abs b  abs (a  b)
    +ℤ-on-abs≅abs-+₂ = Properties₂.lift₂-conv ext Int Int _
                     $ λ {a} {b} {c} p p′  compat-abs (+²-cong {a} {b} {c} p p′)

    +ℤ-identityʳ :  i  i +ℤ zeroℤ  i
    +ℤ-identityʳ = lift _ eq (≅-heterogeneous-irrelevanceʳ _ _  compat-abs) where

      eq :  a  abs a +ℤ zeroℤ  abs a
      eq a = begin
        abs a +ℤ zeroℤ      ≡⟨⟩
        abs a +ℤ abs zero²  ≅⟨ +ℤ-on-abs≅abs-+₂ a zero² 
        abs (a  zero²)    ≅⟨ compat-abs (+²-identityʳ a) 
        abs a               

    +²-identityˡ : (i : ℕ²)  (zero²  i)  i
    +²-identityˡ i = refl

    +ℤ-identityˡ : (i : )   zeroℤ +ℤ i  i
    +ℤ-identityˡ = lift _ eq (≅-heterogeneous-irrelevanceʳ _ _  compat-abs) where

      eq :  a  zeroℤ +ℤ abs a  abs a
      eq a = begin
        zeroℤ +ℤ abs a     ≡⟨⟩
        abs zero² +ℤ abs a ≅⟨ +ℤ-on-abs≅abs-+₂ zero² a 
        abs (zero²  a)   ≅⟨ compat-abs (+²-identityˡ a) 
        abs a              

    +²-assoc : (i j k : ℕ²)  (i  j)  k  i  (j  k)
    +²-assoc (a , b) (c , d) (e , f) = begin
      ((a + c) + e) + (b + (d + f)) ≡⟨ ≡.cong (_+ (b + (d + f))) (+-assoc a c e) 
      (a + (c + e)) + (b + (d + f)) ≡⟨ ≡.cong ((a + (c + e)) +_) (≡.sym (+-assoc b d f)) 
      (a + (c + e)) + ((b + d) + f) 

    +ℤ-assoc :  i j k  (i +ℤ j) +ℤ k  i +ℤ (j +ℤ k)
    +ℤ-assoc = Properties₃.lift₃ ext Int Int Int eq compat₃ where

      eq :  i j k  (abs i +ℤ abs j) +ℤ abs k  abs i +ℤ (abs j +ℤ abs k)
      eq i j k = begin
        (abs i +ℤ abs j) +ℤ abs k ≅⟨ cong (_+ℤ abs k) (+ℤ-on-abs≅abs-+₂ i j) 
        (abs (i  j) +ℤ abs k)   ≅⟨ +ℤ-on-abs≅abs-+₂ (i  j) k 
        abs ((i  j)  k)       ≅⟨ compat-abs (+²-assoc i j k) 
        abs (i  (j  k))       ≅⟨ sym (+ℤ-on-abs≅abs-+₂ i (j  k)) 
        (abs i +ℤ abs (j  k))   ≅⟨ cong (abs i +ℤ_) (sym (+ℤ-on-abs≅abs-+₂ j k)) 
        abs i +ℤ (abs j +ℤ abs k) 

      compat₃ :  {a a′ b b′ c c′}  a  a′  b  b′  c  c′  eq a b c  eq a′ b′ c′
      compat₃ p q r = ≅-heterogeneous-irrelevanceˡ _ _
                    $ cong₂ _+ℤ_ (cong₂ _+ℤ_ (compat-abs p) (compat-abs q))
                    $ compat-abs r