------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed container combinators
------------------------------------------------------------------------

module Data.Container.Indexed.Combinator where

open import Level
open import Data.Container.Indexed
open import Data.Empty using (; ⊥-elim)
open import Data.Unit.Base using ()
open import Data.Product as Prod hiding (Σ) renaming (_×_ to _⟨×⟩_)
open import Data.Sum renaming (_⊎_ to _⟨⊎⟩_)
open import Function as F hiding (id; const) renaming (_∘_ to _⟨∘⟩_)
open import Function.Inverse using (_↔̇_; inverse)
open import Relation.Unary using (Pred; _⊆_; _∪_; _∩_; ; )
  renaming (_⟨×⟩_ to _⟪×⟫_; _⟨⊙⟩_ to _⟪⊙⟫_; _⟨⊎⟩_ to _⟪⊎⟫_)
open import Relation.Binary.PropositionalEquality as P
  using (_≗_; refl)

------------------------------------------------------------------------
-- Combinators


-- Identity.

id :  {o c r} {O : Set o}  Container O O c r
id = F.const (Lift _ )   _  Lift _ ) /  {o} _ _  o)

-- Constant.

const :  {i o c r} {I : Set i} {O : Set o} 
        Pred O c  Container I O c r
const X = X   _  Lift _ ) / λ _  ⊥-elim ⟨∘⟩ lower

-- Duality.

_^⊥ :  {i o c r} {I : Set i} {O : Set o} 
      Container I O c r  Container I O (c  r) c
(C  R / n) ^⊥ = record
  { Command  = λ o  (c : C o)  R c
  ; Response = λ {o} _  C o
  ; next     = λ f c  n c (f c)
  }

-- Strength.

infixl 3 _⋊_

_⋊_ :  {i o c r z} {I : Set i} {O : Set o} (C : Container I O c r)
      (Z : Set z)  Container (I ⟨×⟩ Z) (O ⟨×⟩ Z) c r
C  R / n  Z = C ⟨∘⟩ proj₁  R / λ {oz} c r  n c r , proj₂ oz

infixr 3 _⋉_

_⋉_ :  {i o z c r} {I : Set i} {O : Set o} (Z : Set z)
      (C : Container I O c r)  Container (Z ⟨×⟩ I) (Z ⟨×⟩ O) c r
Z  C  R / n = C ⟨∘⟩ proj₂  R / λ {zo} c r  proj₁ zo , n c r

-- Composition.

infixr 9 _∘_

_∘_ :  {i j k c r} {I : Set i} {J : Set j} {K : Set k} 
      Container J K c r  Container I J c r  Container I K _ _
C₁  C₂ = C  R / n
  where
  C :  k  Set _
  C =  C₁  (Command C₂)

  R :  {k}   C₁  (Command C₂) k  Set _
  R (c , k) =  C₁ {X = Command C₂} (Response C₂ ⟨∘⟩ proj₂) (_ , c , k)

  n :  {k} (c :  C₁  (Command C₂) k)  R c  _
  n (_ , f) (r₁ , r₂) = next C₂ (f r₁) r₂

-- Product. (Note that, up to isomorphism, this is a special case of
-- indexed product.)

infixr 2 _×_

_×_ :  {i o c r} {I : Set i} {O : Set o} 
      Container I O c r  Container I O c r  Container I O c r
(C₁  R₁ / n₁) × (C₂  R₂ / n₂) = record
  { Command  = C₁  C₂
  ; Response = R₁ ⟪⊙⟫ R₂
  ; next     = λ { (c₁ , c₂)  [ n₁ c₁ , n₂ c₂ ] }
  }

-- Indexed product.

Π :  {x i o c r} {X : Set x} {I : Set i} {O : Set o} 
    (X  Container I O c r)  Container I O _ _
Π {X = X} C = record
  { Command  =  X (Command ⟨∘⟩ C)
  ; Response = ⋃[ x  X ] λ c  Response (C x) (c x)
  ; next     = λ { c (x , r)  next (C x) (c x) r }
  }

-- Sum. (Note that, up to isomorphism, this is a special case of
-- indexed sum.)

infixr 1 _⊎_

_⊎_ :  {i o c r} {I : Set i} {O : Set o} 
      Container I O c r  Container I O c r  Container I O _ _
(C₁  R₁ / n₁)  (C₂  R₂ / n₂) = record
  { Command  = C₁  C₂
  ; Response = R₁ ⟪⊎⟫ R₂
  ; next     = [ n₁ , n₂ ]
  }

-- Indexed sum.

Σ :  {x i o c r} {X : Set x} {I : Set i} {O : Set o} 
    (X  Container I O c r)  Container I O _ r
Σ {X = X} C = record
  { Command  =  X (Command ⟨∘⟩ C)
  ; Response = λ { (x , c)  Response (C x) c }
  ; next     = λ { (x , c) r  next (C x) c r }
  }

-- Constant exponentiation. (Note that this is a special case of
-- indexed product.)

infix 0 const[_]⟶_

const[_]⟶_ :  {i o c r } {I : Set i} {O : Set o} 
             Set   Container I O c r  Container I O _ _
const[ X ]⟶ C = Π {X = X} (F.const C)

------------------------------------------------------------------------
-- Correctness proofs

module Identity where

  correct :  {o  c r} {O : Set o} {X : Pred O } 
             id {c = c}{r}  X ↔̇ F.id X
  correct {X = X} = inverse to from  _  refl)  _  refl)
    where
    to :  {x}   id  X x  F.id X x
    to xs = proj₂ xs _

    from :  {x}  F.id X x   id  X x
    from x = (_ , λ _  x)

module Constant (ext :  {}  P.Extensionality  ) where

  correct :  {i o ℓ₁ ℓ₂} {I : Set i} {O : Set o} (X : Pred O ℓ₁)
            {Y : Pred O ℓ₂}   const X  Y ↔̇ F.const X Y
  correct X {Y} = record
    { to         = P.→-to-⟶ to
    ; from       = P.→-to-⟶ from
    ; inverse-of = record
      { right-inverse-of = λ _  refl
      ; left-inverse-of  = to∘from
      }
    }
    where
    to :  const X  Y  X
    to = proj₁

    from : X   const X  Y
    from = < F.id , F.const (⊥-elim ⟨∘⟩ lower) >

    to∘from : _
    to∘from xs = P.cong (proj₁ xs ,_) (ext (⊥-elim ⟨∘⟩ lower))

module Duality where

  correct :  {i o c r } {I : Set i} {O : Set o}
              (C : Container I O c r) (X : Pred I ) 
             C ^⊥  X ↔̇  o  (c : Command C o)   λ r  X (next C c r))
  correct C X = inverse  { (f , g)  < f , g > })  f  proj₁ ⟨∘⟩ f , proj₂ ⟨∘⟩ f)
                         _  refl)  _  refl)

module Composition where

  correct :  {i j k  c r} {I : Set i} {J : Set j} {K : Set k}
              (C₁ : Container J K c r) (C₂ : Container I J c r) 
            {X : Pred I }   C₁  C₂  X ↔̇ ( C₁  ⟨∘⟩  C₂ ) X
  correct C₁ C₂ {X} = inverse to from  _  refl)  _  refl)
    where
    to :  C₁  C₂  X   C₁  ( C₂  X)
    to ((c , f) , g) = (c , < f , curry g >)

    from :  C₁  ( C₂  X)   C₁  C₂  X
    from (c , f) = ((c , proj₁ ⟨∘⟩ f) , uncurry (proj₂ ⟨∘⟩ f))

module Product (ext :  {}  P.Extensionality  ) where

  correct :  {i o c r} {I : Set i} {O : Set o}
              (C₁ C₂ : Container I O c r) {X} 
             C₁ × C₂  X ↔̇ ( C₁  X   C₂  X)
  correct C₁ C₂ {X} = inverse to from from∘to  _  refl)
    where
    to :  C₁ × C₂  X   C₁  X   C₂  X
    to ((c₁ , c₂) , k) = ((c₁ , k ⟨∘⟩ inj₁) , (c₂ , k ⟨∘⟩ inj₂))

    from :  C₁  X   C₂  X   C₁ × C₂  X
    from ((c₁ , k₁) , (c₂ , k₂)) = ((c₁ , c₂) , [ k₁ , k₂ ])

    from∘to : from ⟨∘⟩ to  F.id
    from∘to (c , _) =
      P.cong (c ,_) (ext [  _  refl) ,  _  refl) ])

module IndexedProduct where

  correct :  {x i o c r } {X : Set x} {I : Set i} {O : Set o}
              (C : X  Container I O c r) {Y : Pred I } 
             Π C  Y ↔̇ ⋂[ x  X ]  C x  Y
  correct {X = X} C {Y} = inverse to from  _  refl)  _  refl)
    where
    to :  Π C  Y  ⋂[ x  X ]  C x  Y
    to (c , k) = λ x  (c x , λ r  k (x , r))

    from : ⋂[ x  X ]  C x  Y   Π C  Y
    from f = (proj₁ ⟨∘⟩ f , uncurry (proj₂ ⟨∘⟩ f))

module Sum where

  correct :  {i o c r } {I : Set i} {O : Set o}
              (C₁ C₂ : Container I O c r) {X : Pred I } 
             C₁  C₂  X ↔̇ ( C₁  X   C₂  X)
  correct C₁ C₂ {X} = inverse to from from∘to to∘from
    where
    to :  C₁  C₂  X   C₁  X   C₂  X
    to (inj₁ c₁ , k) = inj₁ (c₁ , k)
    to (inj₂ c₂ , k) = inj₂ (c₂ , k)

    from :  C₁  X   C₂  X   C₁  C₂  X
    from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]

    from∘to : from ⟨∘⟩ to  F.id
    from∘to (inj₁ _ , _) = refl
    from∘to (inj₂ _ , _) = refl

    to∘from : to ⟨∘⟩ from  F.id
    to∘from = [  _  refl) ,  _  refl) ]

module IndexedSum where

  correct :  {x i o c r } {X : Set x} {I : Set i} {O : Set o}
              (C : X  Container I O c r) {Y : Pred I } 
             Σ C  Y ↔̇ ⋃[ x  X ]  C x  Y
  correct {X = X} C {Y} = inverse to from  _  refl)  _  refl)
    where
    to :  Σ C  Y  ⋃[ x  X ]  C x  Y
    to ((x , c) , k) = (x , (c , k))

    from : ⋃[ x  X ]  C x  Y   Σ C  Y
    from (x , (c , k)) = ((x , c) , k)

module ConstantExponentiation where

  correct :  {x i o c r } {X : Set x} {I : Set i} {O : Set o}
              (C : Container I O c r) {Y : Pred I } 
             const[ X ]⟶ C  Y ↔̇ ( X (F.const ( C  Y)))
  correct C {Y} = IndexedProduct.correct (F.const C) {Y}