------------------------------------------------------------------------
-- The Agda standard library
--
-- A simple example of a program using the foreign function interface
------------------------------------------------------------------------

{-# OPTIONS --guardedness #-}

module README.Foreign.Haskell where

-- In order to be considered safe by Agda, the standard library cannot
-- add COMPILE pragmas binding the inductive types it defines to concrete
-- Haskell types.

-- To work around this limitation, we have defined FFI-friendly versions
-- of these types together with a zero-cost coercion `coerce`.

open import Level using (Level)
open import Agda.Builtin.Int
open import Agda.Builtin.Nat
open import Data.Bool.Base using (Bool; if_then_else_)
open import Data.Char as Char
open import Data.List.Base as List using (List; _∷_; []; takeWhile; dropWhile)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Product.Base using (_×_; _,_)
open import Function
open import Relation.Nullary.Decidable

import Foreign.Haskell as FFI
open import Foreign.Haskell.Coerce

private
  variable
    a : Level
    A : Set a

-- Here we use the FFI version of Pair.

postulate
  primUncons    : List A  Maybe (FFI.Pair A (List A))
  primCatMaybes : List (Maybe A)  List A
  primTestChar  : Char  Bool
  primIntEq     : Int  Int  Bool

{-# COMPILE GHC primUncons = \ _ _ xs -> case xs of
  { []       -> Nothing
  ; (x : xs) -> Just (x, xs)
  }
#-}

{-# FOREIGN GHC import Data.Maybe #-}
{-# COMPILE GHC primCatMaybes = \ _ _ -> catMaybes #-}

{-# COMPILE GHC primTestChar = ('-' /=) #-}

{-# COMPILE GHC primIntEq = (==) #-}

-- We however want to use the notion of Pair internal to the standard library.
-- For this we use `coerce` to take use back to the types we are used to.

-- The typeclass mechanism uses the coercion rules for Pair, as well as the
-- knowledge that natural numbers are represented as integers.
-- We additionally benefit from the congruence rules for List, Maybe, Char,
-- Bool, and a reflexivity principle for variable A.

uncons : List A  Maybe (A × List A)
uncons = coerce primUncons

catMaybes : List (Maybe A)  List A
catMaybes = primCatMaybes

testChar : Char  Bool
testChar = coerce primTestChar
  -- note that coerce is useless here but the proof could come from
  -- either `coerce-fun coerce-refl coerce-refl` or `coerce-refl` alone
  -- We (and Agda) do not care which proof we got.

eqNat : Nat  Nat  Bool
eqNat = coerce primIntEq
  -- We can coerce `Nat` to `Int` but not `Int` to `Nat`. This fundamentally
  -- relies on the fact that `Coercible` understands that functions are
  -- contravariant.

open import IO
open import Codata.Musical.Notation
open import Data.String.Base using (toList; fromList; unlines; _++_)
open import Relation.Nullary.Negation

-- example program using uncons, catMaybes, and testChar

main = run $ do
  content  readFiniteFile "README/Foreign/Haskell.agda"
  let chars = toList content
  let cleanup = catMaybes  List.map  c  if testChar c then just c else nothing)
  let cleaned = dropWhile ('\n' ≟_) $ cleanup chars
  case uncons cleaned of λ where
    nothing          putStrLn "I cannot believe this file is filed with dashes only!"
    (just (c , cs))  putStrLn $ unlines
                    $ ("First (non dash) character: " ++ Char.show c)
                     ("Rest (dash free) of the line: " ++ fromList (takeWhile (¬?  ('\n' ≟_)) cs))
                     []

-- You can compile and run this test by writing:
-- agda -c Haskell.agda
-- ../../Haskell

-- You should see the following text (without the indentation on the left):
--   First (non dash) character: ' '
--   Rest (dash free) of the line: The Agda standard library