------------------------------------------------------------------------ -- The Agda standard library -- -- Example use case for a trie: a wee generic lexer ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --sized-types #-} module README.Data.Trie.NonDependent where ------------------------------------------------------------------------ -- Introduction -- A Trie is a tree of values indexed by words in a finite language. It -- allows users to quickly compute the Brzozowski derivative of that -- little mapping from words to values. -- In the most general case, values can depend upon the list of characters -- that constitutes the path leading to them. Here however we consider a -- non-dependent case (cf. README.Trie.Dependent for a dependent use case). -- We can recognize keywords by storing the list of characters they -- correspond to as paths in a Trie and the constructor they are decoded -- to as the tree's values. -- E.g. -- [ . ] is a root -- [ -- m --> ] is an m-labeled edge and is followed when reading 'm' -- [ (X) ] is a value leaf storing constructor X -- --> -- m --> -- m --> -- a --> (LEMMA) -- / -- -- l --> -- e --> -- t --> (LET) -- / -- / -- u --> -- t --> -- u --> -- a --> -- l --> (MUTUAL) -- / / -- .< -- m --> -- o --> -- d --> -- u --> -- l --> -- e --> (MODULE) -- \ -- -- w --> -- h --> -- e --> -- r --> -- e --> (WHERE) -- \ -- --> -- n --> (WHEN) -- after reading 'w', we get the derivative: -- . -- h --> -- e --> -- r --> -- e --> (WHERE) -- \ -- --> -- n --> (WHEN) open import Level open import Data.Unit open import Data.Bool open import Data.Char as Char import Data.Char.Properties as Char open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Fresh as List# using (List#; []; _∷#_) open import Data.Maybe as Maybe open import Data.Product.Base as Product using (_×_; ∃; proj₁; _,_) open import Data.String.Base as String using (String) open import Data.String.Properties as String using (_≟_) open import Data.These as These open import Function.Base using (case_of_; _$_; _∘′_; id; _on_) open import Relation.Nary open import Relation.Binary.Core using (Rel) open import Relation.Nullary.Decidable using (¬?) open import Data.Trie Char.<-strictTotalOrder open import Data.Tree.AVL.Value ------------------------------------------------------------------------ -- Generic lexer record Lexer t : Set (suc t) where field -- Our lexer is parametrised over the type of tokens Tok : Set t -- Keywords are distinguished strings associated to tokens Keyword : Set t Keyword = String × Tok -- Two keywords are considered distinct if the strings are not equal Distinct : Rel Keyword 0ℓ Distinct a b = ⌊ ¬? ((proj₁ a) String.≟ (proj₁ b)) ⌋ field -- We ask users to provide us with a fresh list of keywords to guarantee -- that no two keywords share the same string representation keywords : List# Keyword Distinct -- Some characters are special: they are separators, breaking a string -- into a list of tokens. Some are associated to a token value -- (e.g. parentheses) others are not (e.g. space) breaking : Char → ∃ λ b → if b then Maybe Tok else Lift _ ⊤ -- Finally, strings which are not decoded as keywords are coerced -- using a function to token values. default : String → Tok module _ {t} (L : Lexer t) where open Lexer L tokenize : String → List Tok tokenize = start ∘′ String.toList where mutual -- A Trie is defined for an alphabet of strictly ordered letters (here -- we have picked Char for letters and decided to use the strict total -- order induced by their injection into ℕ as witnessed by the statement -- open import Data.Trie Char.strictTotalOrder earlier in this file). -- It is parametrised by a set of Values indexed over list of letters. -- Because we focus on the non-dependent case, we pick the constant -- family of Value uniformly equal to Tok. It is trivially compatible -- with the notion of equality underlying the strict total order on Chars. Keywords : Set _ Keywords = Trie (const _ Tok) _ -- We build a trie from the association list so that we may easily -- compute the successive derivatives obtained by eating the -- characters one by one init : Keywords init = fromList $ List.map (Product.map₁ String.toList) $ proj₁ $ List#.toList keywords -- Kickstart the tokeniser with an empty accumulator and the initial -- trie. start : List Char → List Tok start = loop [] init -- The main loop loop : (acc : List Char) → -- chars read so far in this token (toks : Keywords) → -- keyword candidates left at this point (input : List Char) → -- list of chars to tokenize List Tok -- Empty input: finish up, check whether we have a non-empty accumulator loop acc toks [] = push acc [] -- At least one character loop acc toks (c ∷ cs) = case breaking c of λ where -- if we are supposed to break on this character, we do (true , m) → push acc $ maybe′ _∷_ id m $ start cs -- otherwise we see whether it leads to a recognized keyword (false , _) → case lookupValue toks (c ∷ []) of λ where -- if so we can forget about the current accumulator and -- restart the tokenizer on the rest of the input (just tok) → tok ∷ start cs -- otherwise we record the character we read in the accumulator, -- compute the derivative of the map of keyword candidates and -- keep going with the rest of the input nothing → loop (c ∷ acc) (lookupTrie toks c) cs -- Grab the accumulator and, unless it is empty, push it on top of -- the decoded list of tokens push : List Char → List Tok → List Tok push [] ts = ts push cs ts = default (String.fromList (List.reverse cs)) ∷ ts ------------------------------------------------------------------------ -- Concrete instance -- A small set of keywords for a language with expressions of the form -- `let x = e in b`. module LetIn where data TOK : Set where LET EQ IN : TOK LPAR RPAR : TOK ID : String → TOK keywords : List# (String × TOK) (λ a b → ⌊ ¬? ((proj₁ a) String.≟ (proj₁ b)) ⌋) keywords = ("let" , LET) ∷# ("=" , EQ) ∷# ("in" , IN) ∷# [] -- Breaking characters: spaces (thrown away) and parentheses (kept) breaking : Char → ∃ (λ b → if b then Maybe TOK else Lift 0ℓ ⊤) breaking c = if isSpace c then true , nothing else parens c where parens : Char → _ parens '(' = true , just LPAR parens ')' = true , just RPAR parens _ = false , _ default : String → TOK default = ID letIn : Lexer 0ℓ letIn = record { LetIn } open import Agda.Builtin.Equality -- A test case: open LetIn _ : tokenize letIn "fix f x = let b = fix f in (f b) x" ≡ ID "fix" ∷ ID "f" ∷ ID "x" ∷ EQ ∷ LET ∷ ID "b" ∷ EQ ∷ ID "fix" ∷ ID "f" ∷ IN ∷ LPAR ∷ ID "f" ∷ ID "b" ∷ RPAR ∷ ID "x" ∷ [] _ = refl