------------------------------------------------------------------------ -- The Agda standard library -- -- Documentation for the `Any` predicate over `List` ------------------------------------------------------------------------ module README.Data.List.Relation.Unary.Any where open import Data.List.Base using ([]; _∷_) open import Data.Nat.Base using (ℕ; _+_; _<_; s≤s; z≤n; _*_; _∸_; _≤_) open import Data.Nat.Properties using (≤-trans; n≤1+n) ------------------------------------------------------------------------ -- Any -- The predicate `Any` encodes the idea of at least one element of a -- given list satisfying a given property (or more formally a -- predicate, see the `Pred` type in `Relation.Unary`). open import Data.List.Relation.Unary.Any as Any -- A proof of type Any consists of a sequence of the "there" -- constructors, which says that the element lies in the remainder of -- the list, followed by a single "here" constructor which indicates -- that the head of the list satisfies the predicate and takes a proof -- that it does so. -- For example a proof that a given list of natural numbers contains -- at least one number greater than or equal to 4 can be written as -- follows: lem₁ : Any (4 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₁ = there (here 4≤5) where 4≤5 = s≤s (s≤s (s≤s (s≤s z≤n))) -- Note that nothing requires that the proof of `Any` points at the -- first such element in the list. There is therefore an alternative -- proof for the above lemma which points to 6 instead of 5. lem₂ : Any (4 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₂ = there (there (there (here 4≤6))) where 4≤6 = s≤s (s≤s (s≤s (s≤s z≤n))) -- There also exist various operations over proofs of `Any` whose names -- shadow the corresponding list operation. The standard way of using -- these is to use `as` to name the module: import Data.List.Relation.Unary.Any as Any -- and then use the qualified name `Any.map`. For example, map can -- be used to change the predicate of `Any`: lem₃ : Any (3 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₃ = Any.map 4≤x⇒3≤x lem₂ where 4≤x⇒3≤x : ∀ {x} → 4 ≤ x → 3 ≤ x 4≤x⇒3≤x = ≤-trans (n≤1+n 3) -- Properties of how list functions interact with `Any` can be -- found in: import Data.List.Relation.Unary.Any.Properties