------------------------------------------------------------------------
-- The Agda standard library
--
-- Documentation for subset relations over `List`s
------------------------------------------------------------------------

open import Data.List.Base using (List; _∷_; [])
open import Data.List.Membership.Propositional.Properties
  using (∈-++⁺ˡ; ∈-insert)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Relation.Binary.PropositionalEquality using (refl)

module README.Data.List.Relation.Binary.Subset where

------------------------------------------------------------------------
-- Subset Relation

-- The Subset relation is a wrapper over `Any` and so is parameterized
-- over an equality relation. Thus to use the subset relation we must
-- tell Agda which equality relation to use.

-- Decidable equality over Strings
open import Data.String.Base using (String)
open import Data.String.Properties using (_≟_)

-- Open the decidable membership module using Decidable ≡ over Strings
open import Data.List.Membership.DecPropositional _≟_


-- Simple cases are inductive proofs

lem₁ :  {xs : List String}  xs  xs
lem₁ p = p

lem₂ : "A"  []  "B"  "A"  []
lem₂ p = there p

-- Or directly use the definition of subsets

lem₃₀ : "E"  "S"  "B"  []  "S"  "U"  "B"  "S"  "E"  "T"  []
lem₃₀ (here refl) = there (there (there (there (here refl))))  -- "E"
lem₃₀ (there (here refl)) = here refl                          -- "S"
lem₃₀ (there (there (here refl))) = there (there (here refl))  -- "B"

-- Or use proofs from `Data.List.Membership.Propositional.Properties`

lem₄ : "A"   []  "B"  "A"  "C"  []
lem₄ p = ∈-++⁺ˡ (there p)

lem₅ : "B"  "S"  "E"  []  "S"  "U"  "B"  "S"  "E"  "T"  []
lem₅ p = ∈-++⁺ˡ (there (there p))

lem₃₁ : "E"  "S"  "B"  []  "S"  "U"  "B"  "S"  "E"  "T"  []
lem₃₁ (here refl) = ∈-insert ("S"  "U"  "B"  "S"  [])
lem₃₁ (there (here refl)) = here refl
lem₃₁ (there (there (here refl))) = ∈-insert ("S"  "U"  [])