open import Data.List.Base using (List; _∷_; [])
open import Data.List.Membership.Propositional.Properties
using (∈-++⁺ˡ; ∈-insert)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Relation.Binary.PropositionalEquality using (refl)
module README.Data.List.Relation.Binary.Subset where
open import Data.String.Base using (String)
open import Data.String.Properties using (_≟_)
open import Data.List.Membership.DecPropositional _≟_
lem₁ : ∀ {xs : List String} → xs ⊆ xs
lem₁ p = p
lem₂ : "A" ∷ [] ⊆ "B" ∷ "A" ∷ []
lem₂ p = there p
lem₃₀ : "E" ∷ "S" ∷ "B" ∷ [] ⊆ "S" ∷ "U" ∷ "B" ∷ "S" ∷ "E" ∷ "T" ∷ []
lem₃₀ (here refl) = there (there (there (there (here refl))))
lem₃₀ (there (here refl)) = here refl
lem₃₀ (there (there (here refl))) = there (there (here refl))
lem₄ : "A" ∷ [] ⊆ "B" ∷ "A" ∷ "C" ∷ []
lem₄ p = ∈-++⁺ˡ (there p)
lem₅ : "B" ∷ "S" ∷ "E" ∷ [] ⊆ "S" ∷ "U" ∷ "B" ∷ "S" ∷ "E" ∷ "T" ∷ []
lem₅ p = ∈-++⁺ˡ (there (there p))
lem₃₁ : "E" ∷ "S" ∷ "B" ∷ [] ⊆ "S" ∷ "U" ∷ "B" ∷ "S" ∷ "E" ∷ "T" ∷ []
lem₃₁ (here refl) = ∈-insert ("S" ∷ "U" ∷ "B" ∷ "S" ∷ [])
lem₃₁ (there (here refl)) = here refl
lem₃₁ (there (there (here refl))) = ∈-insert ("S" ∷ "U" ∷ [])