Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Vec.Bounded.Base where
open import Data.Nat.Base
import Data.Nat.Properties as ℕ
open import Data.List.Base as List using (List)
open import Data.List.Extrema ℕ.≤-totalOrder
open import Data.List.Relation.Unary.All as All using (All)
import Data.List.Relation.Unary.All.Properties as All
open import Data.List.Membership.Propositional using (mapWith∈)
open import Data.Product.Base using (∃; _×_; _,_; proj₁; proj₂)
open import Data.Vec.Base as Vec using (Vec)
open import Data.These.Base as These using (These)
open import Function.Base using (_∘_; id; _$_)
open import Level using (Level)
open import Relation.Nullary.Decidable.Core using (recompute)
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_; refl)
open import Relation.Binary.PropositionalEquality.Properties
using (module ≡-Reasoning)
private
variable
a b c p : Level
A : Set a
B : Set b
C : Set c
m n : ℕ
infix 4 _,_
record Vec≤ (A : Set a) (n : ℕ) : Set a where
constructor _,_
field {length} : ℕ
vec : Vec A length
.bound : length ≤ n
isBounded : (as : Vec≤ A n) → Vec≤.length as ≤ n
isBounded as@(_ , m≤n) = recompute (_ ℕ.≤? _) m≤n
toVec : (as : Vec≤ A n) → Vec A (Vec≤.length as)
toVec as@(vs , _) = vs
fromVec : Vec A n → Vec≤ A n
fromVec v = v , ℕ.≤-refl
padRight : A → Vec≤ A n → Vec A n
padRight a as@(vs , m≤n)
with k , refl ← ℕ.m≤n⇒∃[o]m+o≡n m≤n
= vs Vec.++ Vec.replicate k a
padLeft : A → Vec≤ A n → Vec A n
padLeft a record { length = m ; vec = vs ; bound = m≤n }
with k , refl ← ℕ.m≤n⇒∃[o]m+o≡n m≤n
rewrite ℕ.+-comm m k
= Vec.replicate k a Vec.++ vs
private
split : ∀ m k → m + k ≡ ⌊ k /2⌋ + (m + ⌈ k /2⌉)
split m k = begin
m + k ≡⟨ ≡.cong (m +_) (ℕ.⌊n/2⌋+⌈n/2⌉≡n k) ⟨
m + (⌊ k /2⌋ + ⌈ k /2⌉) ≡⟨ ≡.cong (m +_) (ℕ.+-comm ⌊ k /2⌋ ⌈ k /2⌉) ⟩
m + (⌈ k /2⌉ + ⌊ k /2⌋) ≡⟨ ℕ.+-assoc m ⌈ k /2⌉ ⌊ k /2⌋ ⟨
m + ⌈ k /2⌉ + ⌊ k /2⌋ ≡⟨ ℕ.+-comm _ ⌊ k /2⌋ ⟩
⌊ k /2⌋ + (m + ⌈ k /2⌉) ∎
where open ≡-Reasoning
padBoth : A → A → Vec≤ A n → Vec A n
padBoth aₗ aᵣ record { length = m ; vec = vs ; bound = m≤n }
with k , refl ← ℕ.m≤n⇒∃[o]m+o≡n m≤n
rewrite split m k
= Vec.replicate ⌊ k /2⌋ aₗ
Vec.++ vs
Vec.++ Vec.replicate ⌈ k /2⌉ aᵣ
fromList : (as : List A) → Vec≤ A (List.length as)
fromList = fromVec ∘ Vec.fromList
toList : Vec≤ A n → List A
toList = Vec.toList ∘ toVec
replicate : .(m≤n : m ≤ n) → A → Vec≤ A n
replicate m≤n a = Vec.replicate _ a , m≤n
[] : Vec≤ A n
[] = Vec.[] , z≤n
infixr 5 _∷_
_∷_ : A → Vec≤ A n → Vec≤ A (suc n)
a ∷ (as , p) = a Vec.∷ as , s≤s p
≤-cast : .(m≤n : m ≤ n) → Vec≤ A m → Vec≤ A n
≤-cast m≤n (v , p) = v , ℕ.≤-trans p m≤n
≡-cast : .(eq : m ≡ n) → Vec≤ A m → Vec≤ A n
≡-cast m≡n = ≤-cast (ℕ.≤-reflexive m≡n)
map : (A → B) → Vec≤ A n → Vec≤ B n
map f (v , p) = Vec.map f v , p
reverse : Vec≤ A n → Vec≤ A n
reverse (v , p) = Vec.reverse v , p
alignWith : (These A B → C) → Vec≤ A n → Vec≤ B n → Vec≤ C n
alignWith f (as , p) (bs , q) = Vec.alignWith f as bs , ℕ.⊔-lub p q
zipWith : (A → B → C) → Vec≤ A n → Vec≤ B n → Vec≤ C n
zipWith f (as , p) (bs , q) = Vec.restrictWith f as bs , ℕ.m≤n⇒m⊓o≤n _ p
zip : Vec≤ A n → Vec≤ B n → Vec≤ (A × B) n
zip = zipWith _,_
align : Vec≤ A n → Vec≤ B n → Vec≤ (These A B) n
align = alignWith id
take : ∀ n → Vec≤ A m → Vec≤ A (n ⊓ m)
take zero _ = []
take (suc n) (Vec.[] , p) = []
take {m = suc m} (suc n) (a Vec.∷ as , p) = a ∷ take n (as , s≤s⁻¹ p)
drop : ∀ n → Vec≤ A m → Vec≤ A (m ∸ n)
drop zero v = v
drop (suc n) (Vec.[] , p) = []
drop {m = suc m} (suc n) (a Vec.∷ as , p) = drop n (as , s≤s⁻¹ p)
rectangle : List (∃ (Vec≤ A)) → ∃ (List ∘ Vec≤ A)
rectangle {A = A} rows = width , padded where
sizes = List.map proj₁ rows
width = max 0 sizes
all≤ : All (λ v → proj₁ v ≤ width) rows
all≤ = All.map⁻ (xs≤max 0 sizes)
padded : List (Vec≤ A width)
padded = mapWith∈ rows $ λ {x} x∈rows →
≤-cast (All.lookup all≤ x∈rows) (proj₂ x)