Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- List membership and some related definitions
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Bundles using (Setoid)

module Data.List.Membership.Setoid {c } (S : Setoid c ) where

open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Unary.Any as Any
  using (Any; map; here; there)
open import Data.Product.Base as Product using (; _×_; _,_)
open import Function.Base using (_∘_; flip; const)
open import Relation.Binary.Definitions using (_Respects_)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Unary using (Pred)

open Setoid S renaming (Carrier to A)

------------------------------------------------------------------------
-- Definitions

infix 4 _∈_ _∉_

_∈_ : A  List A  Set _
x  xs = Any (x ≈_) xs

_∉_ : A  List A  Set _
x  xs = ¬ x  xs

------------------------------------------------------------------------
-- Operations

_∷=_ = Any._∷=_ {A = A}
_─_ = Any._─_ {A = A}

mapWith∈ :  {b} {B : Set b}
           (xs : List A)  (∀ {x}  x  xs  B)  List B
mapWith∈ []       f = []
mapWith∈ (x  xs) f = f (here refl)  mapWith∈ xs (f  there)

------------------------------------------------------------------------
-- Finding and losing witnesses

module _ {p} {P : Pred A p} where

  find :  {xs}  Any P xs   λ x  x  xs × P x
  find (here px)   = _ , here refl , px
  find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px

  lose : P Respects _≈_    {x xs}  x  xs  P x  Any P xs
  lose resp x∈xs px = map (flip resp px) x∈xs