Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Setoid)
module Data.List.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Unary.Any as Any
using (Any; map; here; there)
open import Data.Product.Base as Product using (∃; _×_; _,_)
open import Function.Base using (_∘_; flip; const)
open import Relation.Binary.Definitions using (_Respects_)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Unary using (Pred)
open Setoid S renaming (Carrier to A)
infix 4 _∈_ _∉_
_∈_ : A → List A → Set _
x ∈ xs = Any (x ≈_) xs
_∉_ : A → List A → Set _
x ∉ xs = ¬ x ∈ xs
_∷=_ = Any._∷=_ {A = A}
_─_ = Any._─_ {A = A}
mapWith∈ : ∀ {b} {B : Set b}
(xs : List A) → (∀ {x} → x ∈ xs → B) → List B
mapWith∈ [] f = []
mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there)
module _ {p} {P : Pred A p} where
find : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x
find (here px) = _ , here refl , px
find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px
lose : P Respects _≈_ → ∀ {x xs} → x ∈ xs → P x → Any P xs
lose resp x∈xs px = map (flip resp px) x∈xs