Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to setoid list membership
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Membership.Setoid.Properties where

open import Algebra using (Op₂; Selective)
open import Data.Bool.Base using (true; false)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Fin.Properties using (suc-injective)
open import Data.List.Base hiding (find)
import Data.List.Membership.Setoid as Membership
import Data.List.Relation.Binary.Equality.Setoid as Equality
open import Data.List.Relation.Unary.All as All using (All)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
import Data.List.Relation.Unary.Any.Properties as Any
import Data.List.Relation.Unary.Unique.Setoid as Unique
open import Data.Nat.Base using (suc; z<s; _<_)
open import Data.Product.Base as Product using (; _×_; _,_ ; ∃₂)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]′)
open import Function.Base using (_$_; flip; _∘_; _∘′_; id)
open import Function.Bundles using (_↔_)
open import Level using (Level)
open import Relation.Binary.Core using (Rel; _Preserves₂_⟶_⟶_; _Preserves_⟶_)
open import Relation.Binary.Definitions as Binary hiding (Decidable)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)
open import Relation.Nullary.Decidable using (does; _because_; yes; no)
open import Relation.Nullary.Negation using (¬_; contradiction)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Unary as Unary using (Decidable; Pred)

open Setoid using (Carrier)

private
  variable
    c c₁ c₂ c₃ p  ℓ₁ ℓ₂ ℓ₃ : Level

------------------------------------------------------------------------
-- Equality properties

module _ (S : Setoid c ) where

  open Setoid S
  open Equality S
  open Membership S

  -- _∈_ respects the underlying equality

  ∈-resp-≈ :  {xs}  (_∈ xs) Respects _≈_
  ∈-resp-≈ x≈y x∈xs = Any.map (trans (sym x≈y)) x∈xs

  ∉-resp-≈ :  {xs}  (_∉ xs) Respects _≈_
  ∉-resp-≈ v≈w v∉xs w∈xs = v∉xs (∈-resp-≈ (sym v≈w) w∈xs)

  ∈-resp-≋ :  {x}  (x ∈_) Respects _≋_
  ∈-resp-≋ = Any.lift-resp (flip trans)

  ∉-resp-≋ :  {x}  (x ∉_) Respects _≋_
  ∉-resp-≋ xs≋ys v∉xs v∈ys = v∉xs (∈-resp-≋ (≋-sym xs≋ys) v∈ys)

  -- index is injective in its first argument.

  index-injective :  {x₁ x₂ xs} (x₁∈xs : x₁  xs) (x₂∈xs : x₂  xs) 
                    Any.index x₁∈xs  Any.index x₂∈xs  x₁  x₂
  index-injective (here x₁≈x)   (here x₂≈x)   _  = trans x₁≈x (sym x₂≈x)
  index-injective (there x₁∈xs) (there x₂∈xs) eq = index-injective x₁∈xs x₂∈xs (suc-injective eq)

------------------------------------------------------------------------
-- Irrelevance

module _ (S : Setoid c ) where

  open Setoid S
  open Unique S
  open Membership S

  private
    ∉×∈⇒≉ :  {x y xs}  All (y ≉_) xs  x  xs  x  y
    ∉×∈⇒≉ = All.lookupWith λ y≉z x≈z x≈y  y≉z (trans (sym x≈y) x≈z)

  unique⇒irrelevant : Binary.Irrelevant _≈_   {xs}  Unique xs  Unary.Irrelevant (_∈ xs)
  unique⇒irrelevant ≈-irr _        (here p)  (here q)  =
    ≡.cong here (≈-irr p q)
  unique⇒irrelevant ≈-irr (_   u) (there p) (there q) =
    ≡.cong there (unique⇒irrelevant ≈-irr u p q)
  unique⇒irrelevant ≈-irr (≉s  _) (here p)  (there q) =
    contradiction p (∉×∈⇒≉ ≉s q)
  unique⇒irrelevant ≈-irr (≉s  _) (there p) (here q)  =
    contradiction q (∉×∈⇒≉ ≉s p)

------------------------------------------------------------------------
-- mapWith∈

module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where

  open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁)
  open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_; refl to refl₂)
  open Equality S₁ using ([]; _∷_) renaming (_≋_ to _≋₁_)
  open Equality S₂ using () renaming (_≋_ to _≋₂_)
  open Membership S₁

  mapWith∈-cong :  {xs ys}  xs ≋₁ ys 
                  (f :  {x}  x  xs  A₂) 
                  (g :  {y}  y  ys  A₂) 
                  (∀ {x y}  x ≈₁ y  (x∈xs : x  xs) (y∈ys : y  ys) 
                     f x∈xs ≈₂ g y∈ys) 
                  mapWith∈ xs f ≋₂ mapWith∈ ys g
  mapWith∈-cong []            f g cong = []
  mapWith∈-cong (x≈y  xs≋ys) f g cong =
    cong x≈y (here refl₁) (here refl₁) 
    mapWith∈-cong xs≋ys (f  there) (g  there)
       x≈y x∈xs y∈ys  cong x≈y (there x∈xs) (there y∈ys))

  mapWith∈≗map :  f xs  mapWith∈ xs  {x} _  f x) ≋₂ map f xs
  mapWith∈≗map f []       = []
  mapWith∈≗map f (x  xs) = refl₂  mapWith∈≗map f xs


module _ (S : Setoid c ) where

  open Setoid S
  open Membership S

  length-mapWith∈ :  {a} {A : Set a} xs {f :  {x}  x  xs  A} 
                    length (mapWith∈ xs f)  length xs
  length-mapWith∈ []       = ≡.refl
  length-mapWith∈ (x  xs) = ≡.cong suc (length-mapWith∈ xs)

  mapWith∈-id :  xs  mapWith∈ xs  {x} _  x)  xs
  mapWith∈-id []       = ≡.refl
  mapWith∈-id (x  xs) = ≡.cong (x ∷_) (mapWith∈-id xs)

  map-mapWith∈ :  {a b} {A : Set a} {B : Set b} 
                  xs (f :  {x}  x  xs  A) (g : A  B) 
                 map g (mapWith∈ xs f)  mapWith∈ xs (g ∘′ f)
  map-mapWith∈ []       f g = ≡.refl
  map-mapWith∈ (x  xs) f g = ≡.cong (_ ∷_) (map-mapWith∈ xs (f  there) g)

------------------------------------------------------------------------
-- map

module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where

  open Setoid S₁ renaming (_≈_ to _≈₁_)
  open Setoid S₂ renaming (_≈_ to _≈₂_)
  private module M₁ = Membership S₁; open M₁ using (find) renaming (_∈_ to _∈₁_)
  private module M₂ = Membership S₂; open M₂ using () renaming (_∈_ to _∈₂_)

  ∈-map⁺ :  {f}  f Preserves _≈₁_  _≈₂_ 
            {v xs}  v ∈₁ xs  f v ∈₂ map f xs
  ∈-map⁺ pres x∈xs = Any.map⁺ (Any.map pres x∈xs)

  ∈-map⁻ :  {v xs f}  v ∈₂ map f xs 
            λ x  x ∈₁ xs × v ≈₂ f x
  ∈-map⁻ x∈map = find (Any.map⁻ x∈map)

  map-∷= :  {f} (pres : f Preserves _≈₁_  _≈₂_) 
            {xs x v}  (x∈xs : x ∈₁ xs) 
           map f (x∈xs M₁.∷= v)  ∈-map⁺ pres x∈xs M₂.∷= f v
  map-∷= pres (here x≈y)   = ≡.refl
  map-∷= pres (there x∈xs) = ≡.cong (_ ∷_) (map-∷= pres x∈xs)

------------------------------------------------------------------------
-- _++_

module _ (S : Setoid c ) where

  open Membership S using (_∈_)
  open Setoid S
  open Equality S using (_≋_; _∷_; ≋-refl)

  ∈-++⁺ˡ :  {v xs ys}  v  xs  v  xs ++ ys
  ∈-++⁺ˡ = Any.++⁺ˡ

  ∈-++⁺ʳ :  {v} xs {ys}  v  ys  v  xs ++ ys
  ∈-++⁺ʳ = Any.++⁺ʳ

  ∈-++⁻ :  {v} xs {ys}  v  xs ++ ys  (v  xs)  (v  ys)
  ∈-++⁻ = Any.++⁻

  ∈-++⁺∘++⁻ :  {v} xs {ys} (p : v  xs ++ ys) 
              [ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ (∈-++⁻ xs p)  p
  ∈-++⁺∘++⁻ = Any.++⁺∘++⁻

  ∈-++⁻∘++⁺ :  {v} xs {ys} (p : v  xs  v  ys) 
              ∈-++⁻ xs ([ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ p)  p
  ∈-++⁻∘++⁺ = Any.++⁻∘++⁺

  ∈-++↔ :  {v xs ys}  (v  xs  v  ys)  v  xs ++ ys
  ∈-++↔ = Any.++↔

  ∈-++-comm :  {v} xs ys  v  xs ++ ys  v  ys ++ xs
  ∈-++-comm = Any.++-comm

  ∈-++-comm∘++-comm :  {v} xs {ys} (p : v  xs ++ ys) 
                      ∈-++-comm ys xs (∈-++-comm xs ys p)  p
  ∈-++-comm∘++-comm = Any.++-comm∘++-comm

  ∈-++↔++ :  {v} xs ys  v  xs ++ ys  v  ys ++ xs
  ∈-++↔++ = Any.++↔++

  ∈-insert :  xs {ys v w}  v  w  v  xs ++ [ w ] ++ ys
  ∈-insert xs = Any.++-insert xs

  ∈-∃++ :  {v xs}  v  xs  ∃₂ λ ys zs   λ w 
          v  w × xs  ys ++ [ w ] ++ zs
  ∈-∃++ (here px)        = [] , _ , _ , px , ≋-refl
  ∈-∃++ (there {d} v∈xs) =
    let hs , _ , _ , v≈v′ , eq = ∈-∃++ v∈xs
    in d  hs , _ , _ , v≈v′ , refl  eq

------------------------------------------------------------------------
-- concat

module _ (S : Setoid c ) where

  open Setoid S using (_≈_)
  open Membership S using (_∈_)
  open Equality S using (≋-setoid)
  open Membership ≋-setoid using (find) renaming (_∈_ to _∈ₗ_)

  ∈-concat⁺ :  {v xss}  Any (v ∈_) xss  v  concat xss
  ∈-concat⁺ = Any.concat⁺

  ∈-concat⁻ :  {v} xss  v  concat xss  Any (v ∈_) xss
  ∈-concat⁻ = Any.concat⁻

  ∈-concat⁺′ :  {v vs xss}  v  vs  vs ∈ₗ xss  v  concat xss
  ∈-concat⁺′ v∈vs = ∈-concat⁺  Any.map (flip (∈-resp-≋ S) v∈vs)

  ∈-concat⁻′ :  {v} xss  v  concat xss   λ xs  v  xs × xs ∈ₗ xss
  ∈-concat⁻′ xss v∈c[xss] =
    let xs , xs∈xss , v∈xs = find (∈-concat⁻ xss v∈c[xss]) in xs , v∈xs , xs∈xss

------------------------------------------------------------------------
-- reverse

module _ (S : Setoid c ) where

  open Membership S using (_∈_)

  reverse⁺ :  {x xs}  x  xs  x  reverse xs
  reverse⁺ = Any.reverse⁺

  reverse⁻ :  {x xs}  x  reverse xs  x  xs
  reverse⁻ = Any.reverse⁻

------------------------------------------------------------------------
-- cartesianProductWith

module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) (S₃ : Setoid c₃ ℓ₃) where

  open Setoid S₁ renaming (_≈_ to _≈₁_; refl to refl₁)
  open Setoid S₂ renaming (_≈_ to _≈₂_)
  open Setoid S₃ renaming (_≈_ to _≈₃_)
  open Membership S₁ renaming (_∈_ to _∈₁_)
  open Membership S₂ renaming (_∈_ to _∈₂_)
  open Membership S₃ renaming (_∈_ to _∈₃_)

  ∈-cartesianProductWith⁺ :  {f}  f Preserves₂ _≈₁_  _≈₂_  _≈₃_ 
                             {xs ys a b}  a ∈₁ xs  b ∈₂ ys 
                            f a b ∈₃ cartesianProductWith f xs ys
  ∈-cartesianProductWith⁺ pres = Any.cartesianProductWith⁺ _ pres

  ∈-cartesianProductWith⁻ :  f xs ys {v}  v ∈₃ cartesianProductWith f xs ys 
                            ∃₂ λ a b  a ∈₁ xs × b ∈₂ ys × v ≈₃ f a b
  ∈-cartesianProductWith⁻ f (x  xs) ys v∈c with ∈-++⁻ S₃ (map (f x) ys) v∈c
  ... | inj₁ v∈map =
    let b , b∈ys , v≈fxb = ∈-map⁻ S₂ S₃ v∈map
    in x , b , here refl₁ , b∈ys , v≈fxb
  ... | inj₂ v∈com =
    let a , b , a∈xs , b∈ys , v≈fab = ∈-cartesianProductWith⁻ f xs ys v∈com
    in  a , b , there a∈xs , b∈ys , v≈fab

------------------------------------------------------------------------
-- cartesianProduct

module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where

  open Setoid S₁ renaming (Carrier to A)
  open Setoid S₂ renaming (Carrier to B)
  open Membership S₁ renaming (_∈_ to _∈₁_)
  open Membership S₂ renaming (_∈_ to _∈₂_)
  open Membership (S₁ ×ₛ S₂) renaming (_∈_ to _∈₁₂_)

  ∈-cartesianProduct⁺ :  {x y xs ys}  x ∈₁ xs  y ∈₂ ys 
                        (x , y) ∈₁₂ cartesianProduct xs ys
  ∈-cartesianProduct⁺ = Any.cartesianProduct⁺

  ∈-cartesianProduct⁻ :  xs ys {xy@(x , y) : A × B} 
                        xy ∈₁₂ cartesianProduct xs ys 
                        x ∈₁ xs × y ∈₂ ys
  ∈-cartesianProduct⁻ xs ys = Any.cartesianProduct⁻ xs ys

------------------------------------------------------------------------
-- applyUpTo

module _ (S : Setoid c ) where

  open Setoid S using (_≈_; refl)
  open Membership S using (_∈_)

  ∈-applyUpTo⁺ :  f {i n}  i < n  f i  applyUpTo f n
  ∈-applyUpTo⁺ f = Any.applyUpTo⁺ f refl

  ∈-applyUpTo⁻ :  {v} f {n}  v  applyUpTo f n 
                  λ i  i < n × v  f i
  ∈-applyUpTo⁻ = Any.applyUpTo⁻

------------------------------------------------------------------------
-- applyDownFrom

  ∈-applyDownFrom⁺ :  f {i n}  i < n  f i  applyDownFrom f n
  ∈-applyDownFrom⁺ f = Any.applyDownFrom⁺ f refl

  ∈-applyDownFrom⁻ :  {v} f {n}  v  applyDownFrom f n 
                      λ i  i < n × v  f i
  ∈-applyDownFrom⁻ = Any.applyDownFrom⁻

------------------------------------------------------------------------
-- tabulate

module _ (S : Setoid c ) where

  open Setoid S using (_≈_; refl) renaming (Carrier to A)
  open Membership S using (_∈_)

  ∈-tabulate⁺ :  {n} {f : Fin n  A} i  f i  tabulate f
  ∈-tabulate⁺ i = Any.tabulate⁺ i refl

  ∈-tabulate⁻ :  {n} {f : Fin n  A} {v} 
                v  tabulate f   λ i  v  f i
  ∈-tabulate⁻ = Any.tabulate⁻

------------------------------------------------------------------------
-- filter

module _ (S : Setoid c ) {P : Pred (Carrier S) p}
         (P? : Decidable P) (resp : P Respects (Setoid._≈_ S)) where

  open Setoid S using (_≈_; sym)
  open Membership S using (_∈_)

  ∈-filter⁺ :  {v xs}  v  xs  P v  v  filter P? xs
  ∈-filter⁺ {xs = x  _} (here v≈x) Pv with P? x
  ... |  true because   _   = here v≈x
  ... | false because [¬Px] = contradiction (resp v≈x Pv) (invert [¬Px])
  ∈-filter⁺ {xs = x  _} (there v∈xs) Pv with does (P? x)
  ... | true  = there (∈-filter⁺ v∈xs Pv)
  ... | false = ∈-filter⁺ v∈xs Pv

  ∈-filter⁻ :  {v xs}  v  filter P? xs  v  xs × P v
  ∈-filter⁻ {xs = x  xs} v∈f[x∷xs] with P? x
  ... | false because  _   = Product.map there id (∈-filter⁻ v∈f[x∷xs])
  ... |  true because [Px] with v∈f[x∷xs]
  ...   | here  v≈x   = here v≈x , resp (sym v≈x) (invert [Px])
  ...   | there v∈fxs = Product.map there id (∈-filter⁻ v∈fxs)

------------------------------------------------------------------------
-- derun and deduplicate

module _ (S : Setoid c ) {R : Rel (Carrier S) ℓ₂} (R? : Binary.Decidable R) where

  open Setoid S using (_≈_)
  open Membership S using (_∈_)

  ∈-derun⁺ : _≈_ Respectsʳ R   {xs z}  z  xs  z  derun R? xs
  ∈-derun⁺ ≈-resp-R z∈xs = Any.derun⁺ R? ≈-resp-R z∈xs

  ∈-deduplicate⁺ : _≈_ Respectsʳ (flip R)   {xs z} 
                   z  xs  z  deduplicate R? xs
  ∈-deduplicate⁺ ≈-resp-R z∈xs = Any.deduplicate⁺ R? ≈-resp-R z∈xs

  ∈-derun⁻ :  xs {z}  z  derun R? xs  z  xs
  ∈-derun⁻ xs z∈derun[R,xs] = Any.derun⁻ R? z∈derun[R,xs]

  ∈-deduplicate⁻ :  xs {z}  z  deduplicate R? xs  z  xs
  ∈-deduplicate⁻ xs z∈dedup[R,xs] = Any.deduplicate⁻ R? z∈dedup[R,xs]

------------------------------------------------------------------------
-- length

module _ (S : Setoid c ) where

  open Membership S using (_∈_)

  ∈-length :  {x xs}  x  xs  0 < length xs
  ∈-length (here px)    = z<s
  ∈-length (there x∈xs) = z<s

------------------------------------------------------------------------
-- lookup

module _ (S : Setoid c ) where

  open Setoid S using (refl)
  open Membership S using (_∈_)

  ∈-lookup :  xs i  lookup xs i  xs
  ∈-lookup (x  xs) zero    = here refl
  ∈-lookup (x  xs) (suc i) = there (∈-lookup xs i)

------------------------------------------------------------------------
-- foldr

module _ (S : Setoid c ) {_•_ : Op₂ (Carrier S)} where

  open Setoid S using (_≈_; refl; sym; trans)
  open Membership S using (_∈_)

  foldr-selective : Selective _≈_ _•_   e xs 
                    (foldr _•_ e xs  e)  (foldr _•_ e xs  xs)
  foldr-selective •-sel i [] = inj₁ refl
  foldr-selective •-sel i (x  xs) with •-sel x (foldr _•_ i xs)
  ... | inj₁ x•f≈x = inj₂ (here x•f≈x)
  ... | inj₂ x•f≈f with foldr-selective •-sel i xs
  ...   | inj₁ f≈i  = inj₁ (trans x•f≈f f≈i)
  ...   | inj₂ f∈xs = inj₂ (∈-resp-≈ S (sym x•f≈f) (there f∈xs))

------------------------------------------------------------------------
-- _∷=_

module _ (S : Setoid c ) where

  open Setoid S
  open Membership S

  ∈-∷=⁺-updated :  {xs x v} (x∈xs : x  xs)  v  (x∈xs ∷= v)
  ∈-∷=⁺-updated (here  px)  = here refl
  ∈-∷=⁺-updated (there pxs) = there (∈-∷=⁺-updated pxs)

  ∈-∷=⁺-untouched :  {xs x y v} (x∈xs : x  xs)  (¬ x  y)  y  xs  y  (x∈xs ∷= v)
  ∈-∷=⁺-untouched (here  x≈z)  x≉y (here  y≈z)  = contradiction (trans x≈z (sym y≈z)) x≉y
  ∈-∷=⁺-untouched (here  x≈z)  x≉y (there y∈xs) = there y∈xs
  ∈-∷=⁺-untouched (there x∈xs) x≉y (here  y≈z)  = here y≈z
  ∈-∷=⁺-untouched (there x∈xs) x≉y (there y∈xs) = there (∈-∷=⁺-untouched x∈xs x≉y y∈xs)

  ∈-∷=⁻ :  {xs x y v} (x∈xs : x  xs)  (¬ y  v)  y  (x∈xs ∷= v)  y  xs
  ∈-∷=⁻ (here x≈z)   y≉v (here y≈v) = contradiction y≈v y≉v
  ∈-∷=⁻ (here x≈z)   y≉v (there y∈) = there y∈
  ∈-∷=⁻ (there x∈xs) y≉v (here y≈z) = here y≈z
  ∈-∷=⁻ (there x∈xs) y≉v (there y∈) = there (∈-∷=⁻ x∈xs y≉v y∈)