Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conversion of binary operators to binary relations via the left
-- natural order.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Core
open import Data.Product.Base using (_,_; _×_)
open import Data.Sum.Base using (inj₁; inj₂; map)
open import Relation.Binary.Core using (Rel; _⇒_)
open import Relation.Binary.Bundles
  using (Preorder; Poset; DecPoset; TotalOrder; DecTotalOrder)
open import Relation.Binary.Structures
  using (IsEquivalence; IsPreorder; IsPartialOrder; IsDecPartialOrder; IsTotalOrder; IsDecTotalOrder)
open import Relation.Binary.Definitions
  using (Symmetric; Transitive; Reflexive; Antisymmetric; Total; _Respectsʳ_; _Respectsˡ_; _Respects₂_; Decidable)
open import Relation.Nullary.Negation using (¬_)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
open import Relation.Binary.Lattice using (Infimum)

module Relation.Binary.Construct.NaturalOrder.Left
  {a } {A : Set a} (_≈_ : Rel A ) (_∙_ : Op₂ A) where

open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Algebra.Lattice.Structures _≈_

------------------------------------------------------------------------
-- Definition

infix 4 _≤_

_≤_ : Rel A 
x  y = x  (x  y)

------------------------------------------------------------------------
-- Relational properties

reflexive : IsMagma _∙_  Idempotent _∙_  _≈_  _≤_
reflexive magma idem {x} {y} x≈y = begin
  x     ≈⟨ sym (idem x) 
  x  x ≈⟨ ∙-cong refl x≈y 
  x  y 
  where open IsMagma magma; open ≈-Reasoning setoid

refl : Symmetric _≈_  Idempotent _∙_  Reflexive _≤_
refl sym idem {x} = sym (idem x)

antisym : IsEquivalence _≈_  Commutative _∙_  Antisymmetric _≈_ _≤_
antisym isEq comm {x} {y} x≤y y≤x = begin
  x     ≈⟨ x≤y 
  x  y ≈⟨ comm x y 
  y  x ≈⟨ sym y≤x 
  y     
  where open IsEquivalence isEq; open ≈-Reasoning (record { isEquivalence = isEq })

total : Symmetric _≈_  Transitive _≈_  Selective _∙_  Commutative _∙_  Total _≤_
total sym trans sel comm x y = map sym  x∙y≈y  trans (sym x∙y≈y) (comm x y)) (sel x y)

trans : IsSemigroup _∙_  Transitive _≤_
trans semi {x} {y} {z} x≤y y≤z = begin
  x           ≈⟨ x≤y 
  x  y       ≈⟨ ∙-cong S.refl y≤z 
  x  (y  z) ≈⟨ sym (assoc x y z) 
  (x  y)  z ≈⟨ ∙-cong (sym x≤y) S.refl 
  x  z       
  where open module S = IsSemigroup semi; open ≈-Reasoning S.setoid

respʳ : IsMagma _∙_  _≤_ Respectsʳ _≈_
respʳ magma {x} {y} {z} y≈z x≤y = begin
  x     ≈⟨ x≤y 
  x  y ≈⟨ ∙-cong M.refl y≈z 
  x  z 
  where open module M = IsMagma magma; open ≈-Reasoning M.setoid

respˡ : IsMagma _∙_  _≤_ Respectsˡ _≈_
respˡ magma {x} {y} {z} y≈z y≤x = begin
  z     ≈⟨ sym y≈z 
  y     ≈⟨ y≤x 
  y  x ≈⟨ ∙-cong y≈z M.refl 
  z  x 
  where open module M = IsMagma magma; open ≈-Reasoning M.setoid

resp₂ : IsMagma _∙_   _≤_ Respects₂ _≈_
resp₂ magma = respʳ magma , respˡ magma

dec : Decidable _≈_  Decidable _≤_
dec _≟_ x y = x  (x  y)

module _ (semi : IsSemilattice _∙_) where

  private open module S = IsSemilattice semi
  open ≈-Reasoning setoid

  x∙y≤x :  x y  (x  y)  x
  x∙y≤x x y = begin
    x  y       ≈⟨ ∙-cong (sym (idem x)) S.refl 
    (x  x)  y ≈⟨ assoc x x y 
    x  (x  y) ≈⟨ comm x (x  y) 
    (x  y)  x 

  x∙y≤y :  x y  (x  y)  y
  x∙y≤y x y = begin
    x  y        ≈⟨ ∙-cong S.refl (sym (idem y)) 
    x  (y  y)  ≈⟨ sym (assoc x y y) 
    (x  y)  y  

  ∙-presʳ-≤ :  {x y} z  z  x  z  y  z  (x  y)
  ∙-presʳ-≤ {x} {y} z z≤x z≤y = begin
    z            ≈⟨ z≤y 
    z  y        ≈⟨ ∙-cong z≤x S.refl 
    (z  x)  y  ≈⟨ assoc z x y 
    z  (x  y)  

  infimum : Infimum _≤_ _∙_
  infimum x y = x∙y≤x x y , x∙y≤y x y , ∙-presʳ-≤

------------------------------------------------------------------------
-- Structures

isPreorder : IsBand _∙_  IsPreorder _≈_ _≤_
isPreorder band = record
  { isEquivalence = isEquivalence
  ; reflexive     = reflexive isMagma idem
  ; trans         = trans isSemigroup
  }
  where open IsBand band hiding (reflexive; trans)

isPartialOrder : IsSemilattice _∙_  IsPartialOrder _≈_ _≤_
isPartialOrder semilattice = record
  { isPreorder = isPreorder isBand
  ; antisym    = antisym isEquivalence comm
  }
  where open IsSemilattice semilattice

isDecPartialOrder : IsSemilattice _∙_  Decidable _≈_ 
                    IsDecPartialOrder _≈_ _≤_
isDecPartialOrder semilattice _≟_ = record
  { isPartialOrder = isPartialOrder semilattice
  ; _≟_            = _≟_
  ; _≤?_           = dec _≟_
  }

isTotalOrder : IsSemilattice _∙_  Selective _∙_  IsTotalOrder _≈_ _≤_
isTotalOrder latt sel  = record
  { isPartialOrder = isPartialOrder latt
  ; total          = total sym S.trans sel comm
  }
  where open module S = IsSemilattice latt

isDecTotalOrder : IsSemilattice _∙_  Selective _∙_ 
                  Decidable _≈_  IsDecTotalOrder _≈_ _≤_
isDecTotalOrder latt sel _≟_ = record
  { isTotalOrder = isTotalOrder latt sel
  ; _≟_          = _≟_
  ; _≤?_         = dec _≟_
  }

------------------------------------------------------------------------
-- Bundles

preorder : IsBand _∙_  Preorder a  
preorder band = record
  { isPreorder = isPreorder band
  }

poset : IsSemilattice _∙_  Poset a  
poset latt = record
  { isPartialOrder = isPartialOrder latt
  }

decPoset : IsSemilattice _∙_  Decidable _≈_  DecPoset a  
decPoset latt dec = record
  { isDecPartialOrder = isDecPartialOrder latt dec
  }

totalOrder : IsSemilattice _∙_  Selective _∙_  TotalOrder a  
totalOrder latt sel = record
  { isTotalOrder = isTotalOrder latt sel
  }

decTotalOrder : IsSemilattice _∙_  Selective _∙_ 
                Decidable _≈_  DecTotalOrder a  
decTotalOrder latt sel dec = record
  { isDecTotalOrder = isDecTotalOrder latt sel dec
  }