Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise sum
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Sum.Relation.Binary.Pointwise where

open import Data.Product.Base using (_,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.Sum.Properties
open import Level using (Level; _⊔_)
open import Function.Base using (const; _∘_; id)
open import Function.Bundles using (Inverse; mk↔)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)
import Relation.Binary.PropositionalEquality.Properties as 

private
  variable
    a b c d ℓ₁ ℓ₂ ℓ₃  : Level
    A B C D : Set 
    R S T U : REL A B 
    ≈₁ ≈₂ : Rel A 

------------------------------------------------------------------------
-- Definition

data Pointwise {A : Set a} {B : Set b} {C : Set c} {D : Set d}
               (R : REL A C ℓ₁) (S : REL B D ℓ₂)
               : REL (A  B) (C  D) (a  b  c  d  ℓ₁  ℓ₂) where
  inj₁ :  {a c}  R a c  Pointwise R S (inj₁ a) (inj₁ c)
  inj₂ :  {b d}  S b d  Pointwise R S (inj₂ b) (inj₂ d)

----------------------------------------------------------------------
-- Functions

map :  {f : A  C} {g : B  D} 
      R =[ f ]⇒ T  S =[ g ]⇒ U 
      Pointwise R S =[ Sum.map f g ]⇒ Pointwise T U
map R⇒T _ (inj₁ x) = inj₁ (R⇒T x)
map _ S⇒U (inj₂ x) = inj₂ (S⇒U x)

------------------------------------------------------------------------
-- Relational properties

drop-inj₁ :  {x y}  Pointwise R S (inj₁ x) (inj₁ y)  R x y
drop-inj₁ (inj₁ x) = x

drop-inj₂ :  {x y}  Pointwise R S (inj₂ x) (inj₂ y)  S x y
drop-inj₂ (inj₂ x) = x

⊎-refl : Reflexive R  Reflexive S  Reflexive (Pointwise R S)
⊎-refl refl₁ refl₂ {inj₁ x} = inj₁ refl₁
⊎-refl refl₁ refl₂ {inj₂ y} = inj₂ refl₂

⊎-symmetric : Symmetric R  Symmetric S 
              Symmetric (Pointwise R S)
⊎-symmetric sym₁ sym₂ (inj₁ x) = inj₁ (sym₁ x)
⊎-symmetric sym₁ sym₂ (inj₂ x) = inj₂ (sym₂ x)

⊎-transitive : Transitive R  Transitive S 
               Transitive (Pointwise R S)
⊎-transitive trans₁ trans₂ (inj₁ x) (inj₁ y) = inj₁ (trans₁ x y)
⊎-transitive trans₁ trans₂ (inj₂ x) (inj₂ y) = inj₂ (trans₂ x y)

⊎-asymmetric : Asymmetric R  Asymmetric S 
               Asymmetric (Pointwise R S)
⊎-asymmetric asym₁ asym₂ (inj₁ x) = λ { (inj₁ y)  asym₁ x y }
⊎-asymmetric asym₁ asym₂ (inj₂ x) = λ { (inj₂ y)  asym₂ x y }

⊎-substitutive : Substitutive R ℓ₃  Substitutive S ℓ₃ 
                 Substitutive (Pointwise R S) ℓ₃
⊎-substitutive subst₁ subst₂ P (inj₁ x) = subst₁ (P  inj₁) x
⊎-substitutive subst₁ subst₂ P (inj₂ x) = subst₂ (P  inj₂) x

⊎-decidable : Decidable R  Decidable S  Decidable (Pointwise R S)
⊎-decidable _≟₁_ _≟₂_ (inj₁ x) (inj₁ y) = Dec.map′ inj₁ drop-inj₁ (x ≟₁ y)
⊎-decidable _≟₁_ _≟₂_ (inj₁ x) (inj₂ y) = no λ()
⊎-decidable _≟₁_ _≟₂_ (inj₂ x) (inj₁ y) = no λ()
⊎-decidable _≟₁_ _≟₂_ (inj₂ x) (inj₂ y) = Dec.map′ inj₂ drop-inj₂ (x ≟₂ y)

⊎-reflexive : ≈₁  R  ≈₂  S 
              (Pointwise ≈₁ ≈₂)  (Pointwise R S)
⊎-reflexive refl₁ refl₂ (inj₁ x) = inj₁ (refl₁ x)
⊎-reflexive refl₁ refl₂ (inj₂ x) = inj₂ (refl₂ x)

⊎-irreflexive : Irreflexive ≈₁ R  Irreflexive ≈₂ S 
                Irreflexive (Pointwise ≈₁ ≈₂) (Pointwise R S)
⊎-irreflexive irrefl₁ irrefl₂ (inj₁ x) (inj₁ y) = irrefl₁ x y
⊎-irreflexive irrefl₁ irrefl₂ (inj₂ x) (inj₂ y) = irrefl₂ x y

⊎-antisymmetric : Antisymmetric ≈₁ R  Antisymmetric ≈₂ S 
                  Antisymmetric (Pointwise ≈₁ ≈₂) (Pointwise R S)
⊎-antisymmetric antisym₁ antisym₂ (inj₁ x) (inj₁ y) = inj₁ (antisym₁ x y)
⊎-antisymmetric antisym₁ antisym₂ (inj₂ x) (inj₂ y) = inj₂ (antisym₂ x y)

⊎-respectsˡ : R Respectsˡ ≈₁  S Respectsˡ ≈₂ 
              (Pointwise R S) Respectsˡ (Pointwise ≈₁ ≈₂)
⊎-respectsˡ resp₁ resp₂ (inj₁ x) (inj₁ y) = inj₁ (resp₁ x y)
⊎-respectsˡ resp₁ resp₂ (inj₂ x) (inj₂ y) = inj₂ (resp₂ x y)

⊎-respectsʳ : R Respectsʳ ≈₁  S Respectsʳ ≈₂ 
              (Pointwise R S) Respectsʳ (Pointwise ≈₁ ≈₂)
⊎-respectsʳ resp₁ resp₂ (inj₁ x) (inj₁ y) = inj₁ (resp₁ x y)
⊎-respectsʳ resp₁ resp₂ (inj₂ x) (inj₂ y) = inj₂ (resp₂ x y)

⊎-respects₂ : R Respects₂ ≈₁  S Respects₂ ≈₂ 
              (Pointwise R S) Respects₂ (Pointwise ≈₁ ≈₂)
⊎-respects₂ (r₁ , l₁) (r₂ , l₂) = ⊎-respectsʳ r₁ r₂ , ⊎-respectsˡ l₁ l₂

------------------------------------------------------------------------
-- Structures

⊎-isEquivalence : IsEquivalence ≈₁  IsEquivalence ≈₂ 
                  IsEquivalence (Pointwise ≈₁ ≈₂)
⊎-isEquivalence eq₁ eq₂ = record
  { refl  = ⊎-refl       (refl  eq₁) (refl  eq₂)
  ; sym   = ⊎-symmetric  (sym   eq₁) (sym   eq₂)
  ; trans = ⊎-transitive (trans eq₁) (trans eq₂)
  } where open IsEquivalence

⊎-isDecEquivalence : IsDecEquivalence ≈₁  IsDecEquivalence ≈₂ 
                     IsDecEquivalence (Pointwise ≈₁ ≈₂)
⊎-isDecEquivalence eq₁ eq₂ = record
  { isEquivalence =
      ⊎-isEquivalence (isEquivalence eq₁) (isEquivalence eq₂)
  ; _≟_           = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂)
  } where open IsDecEquivalence

⊎-isPreorder : IsPreorder ≈₁ R  IsPreorder ≈₂ S 
               IsPreorder (Pointwise ≈₁ ≈₂) (Pointwise R S)
⊎-isPreorder pre₁ pre₂ = record
  { isEquivalence =
      ⊎-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂)
  ; reflexive     = ⊎-reflexive (reflexive pre₁) (reflexive pre₂)
  ; trans         = ⊎-transitive (trans pre₁) (trans pre₂)
  } where open IsPreorder

⊎-isPartialOrder : IsPartialOrder ≈₁ R  IsPartialOrder ≈₂ S 
                   IsPartialOrder
                     (Pointwise ≈₁ ≈₂) (Pointwise R S)
⊎-isPartialOrder po₁ po₂ = record
  { isPreorder = ⊎-isPreorder (isPreorder po₁) (isPreorder po₂)
  ; antisym    = ⊎-antisymmetric (antisym po₁) (antisym    po₂)
  } where open IsPartialOrder

⊎-isStrictPartialOrder : IsStrictPartialOrder ≈₁ R 
                         IsStrictPartialOrder ≈₂ S 
                         IsStrictPartialOrder
                           (Pointwise ≈₁ ≈₂) (Pointwise R S)
⊎-isStrictPartialOrder spo₁ spo₂ = record
  { isEquivalence =
      ⊎-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂)
  ; irrefl        = ⊎-irreflexive (irrefl   spo₁) (irrefl   spo₂)
  ; trans         = ⊎-transitive  (trans    spo₁) (trans    spo₂)
  ; <-resp-≈      = ⊎-respects₂   (<-resp-≈ spo₁) (<-resp-≈ spo₂)
  } where open IsStrictPartialOrder

------------------------------------------------------------------------
-- Bundles

⊎-setoid : Setoid a b  Setoid c d  Setoid _ _
⊎-setoid s₁ s₂ = record
  { isEquivalence =
      ⊎-isEquivalence (isEquivalence s₁) (isEquivalence s₂)
  } where open Setoid

⊎-decSetoid : DecSetoid a b  DecSetoid c d  DecSetoid _ _
⊎-decSetoid ds₁ ds₂ = record
  { isDecEquivalence =
      ⊎-isDecEquivalence (isDecEquivalence ds₁) (isDecEquivalence ds₂)
  } where open DecSetoid

⊎-preorder : Preorder a b ℓ₁  Preorder c d ℓ₂  Preorder _ _ _
⊎-preorder p₁ p₂ = record
  { isPreorder   =
      ⊎-isPreorder (isPreorder p₁) (isPreorder p₂)
  } where open Preorder

⊎-poset : Poset a b c  Poset a b c  Poset _ _ _
⊎-poset po₁ po₂ = record
  { isPartialOrder =
      ⊎-isPartialOrder (isPartialOrder po₁) (isPartialOrder po₂)
  } where open Poset

------------------------------------------------------------------------
-- Additional notation

-- Infix combining setoids
infix 4 _⊎ₛ_
_⊎ₛ_ : Setoid a b  Setoid c d  Setoid _ _
_⊎ₛ_ = ⊎-setoid

------------------------------------------------------------------------
-- The propositional equality setoid over products can be
-- decomposed using Pointwise

Pointwise-≡⇒≡ : (Pointwise _≡_ _≡_)  _≡_ {A = A  B}
Pointwise-≡⇒≡ (inj₁ x) = ≡.cong inj₁ x
Pointwise-≡⇒≡ (inj₂ x) = ≡.cong inj₂ x

≡⇒Pointwise-≡ : _≡_ {A = A  B}  (Pointwise _≡_ _≡_)
≡⇒Pointwise-≡ ≡.refl = ⊎-refl ≡.refl ≡.refl

Pointwise-≡↔≡ : (A : Set a) (B : Set b) 
                 Inverse (≡.setoid A ⊎ₛ ≡.setoid B) (≡.setoid (A  B))
Pointwise-≡↔≡ _ _ = record
  { to        = id
  ; from      = id
  ; to-cong   = Pointwise-≡⇒≡
  ; from-cong = ≡⇒Pointwise-≡
  ; inverse   = Pointwise-≡⇒≡ , ≡⇒Pointwise-≡
  }