Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Sum.Function.Propositional where
open import Data.Sum.Base using (_⊎_)
open import Data.Sum.Function.Setoid
open import Data.Sum.Relation.Binary.Pointwise using (Pointwise-≡↔≡; _⊎ₛ_)
open import Function.Construct.Composition as Compose
open import Function.Related.Propositional
using (_∼[_]_; implication; reverseImplication; equivalence; injection;
reverseInjection; leftInverse; surjection; bijection)
open import Function.Base using (id)
open import Function.Bundles
using (Inverse; _⟶_; _⇔_; _↣_; _↠_; _↩_; _↪_; _⤖_; _↔_)
open import Function.Properties.Inverse as Inv
open import Level using (Level; _⊔_)
open import Relation.Binary.Core using (REL)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.PropositionalEquality.Properties using (setoid)
private
variable
a b c d : Level
A B C D : Set a
private
liftViaInverse : {R : ∀ {a b ℓ₁ ℓ₂} → REL (Setoid a ℓ₁) (Setoid b ℓ₂) (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)} →
(∀ {a b c ℓ₁ ℓ₂ ℓ₃} {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} {U : Setoid c ℓ₃} → R S T → R T U → R S U) →
(∀ {a b ℓ₁ ℓ₂} {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} → Inverse S T → R S T) →
(R (setoid A) (setoid C) → R (setoid B) (setoid D) → R (setoid A ⊎ₛ setoid B) (setoid C ⊎ₛ setoid D)) →
R (setoid A) (setoid C) → R (setoid B) (setoid D) →
R (setoid (A ⊎ B)) (setoid (C ⊎ D))
liftViaInverse trans inv⇒R lift RAC RBD =
Inv.transportVia trans inv⇒R (Inv.sym (Pointwise-≡↔≡ _ _)) (lift RAC RBD) (Pointwise-≡↔≡ _ _)
infixr 1 _⊎-⟶_ _⊎-⇔_ _⊎-↣_ _⊎-↩_ _⊎-↪_ _⊎-↔_
_⊎-⟶_ : A ⟶ B → C ⟶ D → (A ⊎ C) ⟶ (B ⊎ D)
_⊎-⟶_ = liftViaInverse Compose.function Inv.toFunction _⊎-function_
_⊎-⇔_ : A ⇔ B → C ⇔ D → (A ⊎ C) ⇔ (B ⊎ D)
_⊎-⇔_ = liftViaInverse Compose.equivalence Inverse⇒Equivalence _⊎-equivalence_
_⊎-↣_ : A ↣ B → C ↣ D → (A ⊎ C) ↣ (B ⊎ D)
_⊎-↣_ = liftViaInverse Compose.injection Inverse⇒Injection _⊎-injection_
_⊎-↠_ : A ↠ B → C ↠ D → (A ⊎ C) ↠ (B ⊎ D)
_⊎-↠_ = liftViaInverse Compose.surjection Inverse⇒Surjection _⊎-surjection_
_⊎-↩_ : A ↩ B → C ↩ D → (A ⊎ C) ↩ (B ⊎ D)
_⊎-↩_ = liftViaInverse Compose.leftInverse Inverse.leftInverse _⊎-leftInverse_
_⊎-↪_ : A ↪ B → C ↪ D → (A ⊎ C) ↪ (B ⊎ D)
_⊎-↪_ = liftViaInverse Compose.rightInverse Inverse.rightInverse _⊎-rightInverse_
_⊎-⤖_ : A ⤖ B → C ⤖ D → (A ⊎ C) ⤖ (B ⊎ D)
_⊎-⤖_ = liftViaInverse Compose.bijection Inverse⇒Bijection _⊎-bijection_
_⊎-↔_ : A ↔ B → C ↔ D → (A ⊎ C) ↔ (B ⊎ D)
_⊎-↔_ = liftViaInverse Compose.inverse id _⊎-inverse_
infixr 1 _⊎-cong_
_⊎-cong_ : ∀ {k} → A ∼[ k ] B → C ∼[ k ] D → (A ⊎ C) ∼[ k ] (B ⊎ D)
_⊎-cong_ {k = implication} = _⊎-⟶_
_⊎-cong_ {k = reverseImplication} = _⊎-⟶_
_⊎-cong_ {k = equivalence} = _⊎-⇔_
_⊎-cong_ {k = injection} = _⊎-↣_
_⊎-cong_ {k = reverseInjection} = _⊎-↣_
_⊎-cong_ {k = leftInverse} = _⊎-↪_
_⊎-cong_ {k = surjection} = _⊎-↠_
_⊎-cong_ {k = bijection} = _⊎-↔_