Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finding the maximum/minimum values in a list
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Bundles using (TotalOrder; Setoid)

module Data.List.Extrema
  {b ℓ₁ ℓ₂} (totalOrder : TotalOrder b ℓ₁ ℓ₂) where

import Algebra.Construct.NaturalChoice.Min as Min
import Algebra.Construct.NaturalChoice.Max as Max
open import Data.List.Base using (List; foldr)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; lookup; map; tabulate)
open import Data.List.Membership.Propositional using (_∈_; lose)
open import Data.List.Membership.Propositional.Properties
  using (foldr-selective)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_; _⊇_)
open import Data.List.Properties
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Function.Base using (id; flip; _on_; _∘_)
open import Level using (Level)
open import Relation.Unary using (Pred)
import Relation.Binary.Construct.NonStrictToStrict as NonStrictToStrict
open import Relation.Binary.PropositionalEquality.Core
  using (_≡_; sym; subst) renaming (refl to ≡-refl)
import Relation.Binary.Construct.On as On

------------------------------------------------------------------------
-- Setup

open TotalOrder totalOrder renaming (Carrier to B)
open NonStrictToStrict _≈_ _≤_ using (_<_)
open import Data.List.Extrema.Core totalOrder
  renaming (⊓ᴸ to ⊓-lift; ⊔ᴸ to ⊔-lift)

private
  variable
    a p : Level
    A : Set a

------------------------------------------------------------------------
-- Functions

argmin : (A  B)  A  List A  A
argmin f = foldr (⊓-lift f)

argmax : (A  B)  A  List A  A
argmax f = foldr (⊔-lift f)

min : B  List B  B
min = argmin id

max : B  List B  B
max = argmax id

------------------------------------------------------------------------
-- Properties of argmin

module _ {f : A  B} where

  f[argmin]≤v⁺ :  {v}  xs  (f   v)  (Any  x  f x  v) xs) 
                f (argmin f  xs)  v
  f[argmin]≤v⁺ = foldr-preservesᵒ (⊓ᴸ-presᵒ-≤v f)

  f[argmin]<v⁺ :  {v}  xs  (f  < v)  (Any  x  f x < v) xs) 
                f (argmin f  xs) < v
  f[argmin]<v⁺ = foldr-preservesᵒ (⊓ᴸ-presᵒ-<v f)

  v≤f[argmin]⁺ :  {v  xs}  v  f   All  x  v  f x) xs 
                v  f (argmin f  xs)
  v≤f[argmin]⁺ = foldr-preservesᵇ (⊓ᴸ-presᵇ-v≤ f)

  v<f[argmin]⁺ :  {v  xs}  v < f   All  x  v < f x) xs 
                v < f (argmin f  xs)
  v<f[argmin]⁺ = foldr-preservesᵇ (⊓ᴸ-presᵇ-v< f)

  f[argmin]≤f[⊤] :   xs  f (argmin f  xs)  f 
  f[argmin]≤f[⊤]  xs = f[argmin]≤v⁺  xs (inj₁ refl)

  f[argmin]≤f[xs] :   xs  All  x  f (argmin f  xs)  f x) xs
  f[argmin]≤f[xs]  xs = foldr-forcesᵇ (⊓ᴸ-forcesᵇ-v≤ f)  xs refl

  f[argmin]≈f[v]⁺ :  {v  xs}  v  xs  All  x  f v  f x) xs  f v  f  
                    f (argmin f  xs)  f v
  f[argmin]≈f[v]⁺ v∈xs fv≤fxs fv≤f⊤ = antisym
    (f[argmin]≤v⁺ _ _ (inj₂ (lose v∈xs refl)))
    (v≤f[argmin]⁺ fv≤f⊤ fv≤fxs)

argmin[xs]≤argmin[ys]⁺ :  {f g : A  B} ⊤₁ {⊤₂} xs {ys : List A} 
                        (f ⊤₁  g ⊤₂)  Any  x  f x  g ⊤₂) xs 
                        All  y  (f ⊤₁  g y)  Any  x  f x  g y) xs) ys 
                        f (argmin f ⊤₁ xs)  g (argmin g ⊤₂ ys)
argmin[xs]≤argmin[ys]⁺ ⊤₁ xs xs≤⊤₂ xs≤ys =
  v≤f[argmin]⁺ (f[argmin]≤v⁺ ⊤₁ _ xs≤⊤₂) (map (f[argmin]≤v⁺ ⊤₁ xs) xs≤ys)

argmin[xs]<argmin[ys]⁺ :  {f g : A  B} ⊤₁ {⊤₂} xs {ys : List A} 
                        (f ⊤₁ < g ⊤₂)  Any  x  f x < g ⊤₂) xs 
                        All  y  (f ⊤₁ < g y)  Any  x  f x < g y) xs) ys 
                        f (argmin f ⊤₁ xs) < g (argmin g ⊤₂ ys)
argmin[xs]<argmin[ys]⁺ ⊤₁ xs xs<⊤₂ xs<ys =
  v<f[argmin]⁺ (f[argmin]<v⁺ ⊤₁ _ xs<⊤₂) (map (f[argmin]<v⁺ ⊤₁ xs) xs<ys)

argmin-sel :  (f : A  B)  xs  (argmin f  xs  )  (argmin f  xs  xs)
argmin-sel f = foldr-selective (⊓ᴸ-sel f)

argmin-all :  (f : A  B) { xs} {P : Pred A p} 
             P   All P xs  P (argmin f  xs)
argmin-all f {} {xs} {P = P}  p⊤ pxs with argmin-sel f  xs
... | inj₁ argmin≡⊤  = subst P (sym argmin≡⊤) p⊤
... | inj₂ argmin∈xs = lookup pxs argmin∈xs

------------------------------------------------------------------------
-- Properties of argmax

module _ {f : A  B} where

  v≤f[argmax]⁺ :  {v}  xs  (v  f )  (Any  x  v  f x) xs) 
                v  f (argmax f  xs)
  v≤f[argmax]⁺ = foldr-preservesᵒ (⊔ᴸ-presᵒ-v≤ f)

  v<f[argmax]⁺ :  {v}  xs  (v < f )  (Any  x  v < f x) xs) 
                v < f (argmax f  xs)
  v<f[argmax]⁺ = foldr-preservesᵒ (⊔ᴸ-presᵒ-v< f)

  f[argmax]≤v⁺ :  {v  xs}  f   v  All  x  f x  v) xs 
                f (argmax f  xs)  v
  f[argmax]≤v⁺ = foldr-preservesᵇ (⊔ᴸ-presᵇ-≤v f)

  f[argmax]<v⁺ :  {v  xs}  f  < v  All  x  f x < v) xs 
                f (argmax f  xs) < v
  f[argmax]<v⁺ = foldr-preservesᵇ (⊔ᴸ-presᵇ-<v f)

  f[⊥]≤f[argmax] :   xs  f   f (argmax f  xs)
  f[⊥]≤f[argmax]  xs = v≤f[argmax]⁺  xs (inj₁ refl)

  f[xs]≤f[argmax] :   xs  All  x  f x  f (argmax f  xs)) xs
  f[xs]≤f[argmax]  xs = foldr-forcesᵇ (⊔ᴸ-forcesᵇ-≤v f)  xs refl

  f[argmax]≈f[v]⁺ :  {v  xs}  v  xs  All  x  f x  f v) xs  f   f v 
                    f (argmax f  xs)  f v
  f[argmax]≈f[v]⁺ v∈xs fxs≤fv f⊥≤fv = antisym
    (f[argmax]≤v⁺ f⊥≤fv fxs≤fv)
    (v≤f[argmax]⁺ _ _ (inj₂ (lose v∈xs refl)))

argmax[xs]≤argmax[ys]⁺ :  {f g : A  B} {⊥₁} ⊥₂ {xs : List A} ys 
                         (f ⊥₁  g ⊥₂)  Any  y  f ⊥₁  g y) ys 
                         All  x  (f x  g ⊥₂)  Any  y  f x  g y) ys) xs 
                         f (argmax f ⊥₁ xs)  g (argmax g ⊥₂ ys)
argmax[xs]≤argmax[ys]⁺ ⊥₂ ys ⊥₁≤ys xs≤ys =
  f[argmax]≤v⁺ (v≤f[argmax]⁺ ⊥₂ _ ⊥₁≤ys) (map (v≤f[argmax]⁺ ⊥₂ ys) xs≤ys)

argmax[xs]<argmax[ys]⁺ :  {f g : A  B} {⊥₁} ⊥₂ {xs : List A} ys 
                         (f ⊥₁ < g ⊥₂)  Any  y  f ⊥₁ < g y) ys 
                         All  x  (f x < g ⊥₂)  Any  y  f x < g y) ys) xs 
                         f (argmax f ⊥₁ xs) < g (argmax g ⊥₂ ys)
argmax[xs]<argmax[ys]⁺ ⊥₂ ys ⊥₁<ys xs<ys =
  f[argmax]<v⁺ (v<f[argmax]⁺ ⊥₂ _ ⊥₁<ys) (map (v<f[argmax]⁺ ⊥₂ ys) xs<ys)

argmax-sel :  (f : A  B)  xs  (argmax f  xs  )  (argmax f  xs  xs)
argmax-sel f = foldr-selective (⊔ᴸ-sel f)

argmax-all :  (f : A  B) {P : Pred A p} { xs} 
             P   All P xs  P (argmax f  xs)
argmax-all f {P = P} {} {xs} p⊥ pxs with argmax-sel f  xs
... | inj₁ argmax≡⊥  = subst P (sym argmax≡⊥) p⊥
... | inj₂ argmax∈xs = lookup pxs argmax∈xs

------------------------------------------------------------------------
-- Properties of min

min≤v⁺ :  {v}  xs    v  Any (_≤ v) xs  min  xs  v
min≤v⁺ = f[argmin]≤v⁺

min<v⁺ :  {v}  xs   < v  Any (_< v) xs  min  xs < v
min<v⁺ = f[argmin]<v⁺

v≤min⁺ :  {v  xs}  v    All (v ≤_) xs  v  min  xs
v≤min⁺ = v≤f[argmin]⁺

v<min⁺ :  {v  xs}  v <   All (v <_) xs  v < min  xs
v<min⁺ = v<f[argmin]⁺

min≤⊤ :   xs  min  xs  
min≤⊤ = f[argmin]≤f[⊤]

min≤xs :   xs  All (min  xs ≤_) xs
min≤xs = f[argmin]≤f[xs]

min≈v⁺ :  {v  xs}  v  xs  All (v ≤_) xs  v    min  xs  v
min≈v⁺ = f[argmin]≈f[v]⁺

min[xs]≤min[ys]⁺ :  ⊤₁ {⊤₂} xs {ys}  (⊤₁  ⊤₂)  Any (_≤ ⊤₂) xs 
                   All  y  (⊤₁  y)  Any  x  x  y) xs) ys 
                   min ⊤₁ xs  min ⊤₂ ys
min[xs]≤min[ys]⁺ = argmin[xs]≤argmin[ys]⁺

min[xs]<min[ys]⁺ :  ⊤₁ {⊤₂} xs {ys}  (⊤₁ < ⊤₂)  Any (_< ⊤₂) xs 
                   All  y  (⊤₁ < y)  Any  x  x < y) xs) ys 
                   min ⊤₁ xs < min ⊤₂ ys
min[xs]<min[ys]⁺ = argmin[xs]<argmin[ys]⁺

min-mono-⊆ :  {⊥₁ ⊥₂ xs ys}  ⊥₁  ⊥₂  xs  ys  min ⊥₁ xs  min ⊥₂ ys
min-mono-⊆ ⊥₁≤⊥₂ ys⊆xs = min[xs]≤min[ys]⁺ _ _ (inj₁ ⊥₁≤⊥₂)
  (tabulate (inj₂  Any.map  {≡-refl  refl})  ys⊆xs))

------------------------------------------------------------------------
-- Properties of max

max≤v⁺ :  {v  xs}    v  All (_≤ v) xs  max  xs  v
max≤v⁺ = f[argmax]≤v⁺

max<v⁺ :  {v  xs}   < v  All (_< v) xs  max  xs < v
max<v⁺ = f[argmax]<v⁺

v≤max⁺ :  {v}  xs  v    Any (v ≤_) xs  v  max  xs
v≤max⁺ = v≤f[argmax]⁺

v<max⁺ :  {v}  xs  v <   Any (v <_) xs  v < max  xs
v<max⁺ = v<f[argmax]⁺

⊥≤max :   xs    max  xs
⊥≤max = f[⊥]≤f[argmax]

xs≤max :   xs  All (_≤ max  xs) xs
xs≤max = f[xs]≤f[argmax]

max≈v⁺ :  {v  xs}  v  xs  All (_≤ v) xs    v  max  xs  v
max≈v⁺ = f[argmax]≈f[v]⁺

max[xs]≤max[ys]⁺ :  {⊥₁} ⊥₂ {xs} ys  ⊥₁  ⊥₂  Any (⊥₁ ≤_) ys 
                   All  x  x  ⊥₂  Any (x ≤_) ys) xs 
                   max ⊥₁ xs  max ⊥₂ ys
max[xs]≤max[ys]⁺ = argmax[xs]≤argmax[ys]⁺

max[xs]<max[ys]⁺ :  {⊥₁} ⊥₂ {xs} ys  ⊥₁ < ⊥₂  Any (⊥₁ <_) ys 
                   All  x  x < ⊥₂  Any (x <_) ys) xs 
                   max ⊥₁ xs < max ⊥₂ ys
max[xs]<max[ys]⁺ = argmax[xs]<argmax[ys]⁺

max-mono-⊆ :  {⊥₁ ⊥₂ xs ys}  ⊥₁  ⊥₂  xs  ys  max ⊥₁ xs  max ⊥₂ ys
max-mono-⊆ ⊥₁≤⊥₂ xs⊆ys = max[xs]≤max[ys]⁺ _ _ (inj₁ ⊥₁≤⊥₂)
  (tabulate (inj₂  Any.map  {≡-refl  refl})  xs⊆ys))