Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lemmas relating algebraic definitions (such as associativity and
-- commutativity) that don't require the equality relation to be a setoid.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Algebra.Consequences.Base
  {a} {A : Set a} where

open import Algebra.Core
open import Algebra.Definitions
open import Data.Sum.Base
open import Relation.Binary.Core
open import Relation.Binary.Definitions using (Reflexive)

module _ {} {_•_ : Op₂ A} (_≈_ : Rel A ) where

  sel⇒idem : Selective _≈_ _•_  Idempotent _≈_ _•_
  sel⇒idem sel x = reduce (sel x x)

module _ {} {f : Op₁ A} (_≈_ : Rel A ) where

  reflexive∧selfInverse⇒involutive : Reflexive _≈_ 
                                     SelfInverse _≈_ f 
                                     Involutive _≈_ f
  reflexive∧selfInverse⇒involutive refl inv _ = inv refl

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 2.0

reflexive+selfInverse⇒involutive = reflexive∧selfInverse⇒involutive
{-# WARNING_ON_USAGE reflexive+selfInverse⇒involutive
"Warning: reflexive+selfInverse⇒involutive was deprecated in v2.0.
Please use reflexive∧selfInverse⇒involutive instead."
#-}