{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Bifunctor.Properties where
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Category
open import Categories.Functor
open import Categories.Functor.Bifunctor
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ (F : Bifunctor C D E) where
private
module C = Category C
module D = Category D
module E = Category E
variable
A B : C.Obj
X Y : D.Obj
f h j : A C.⇒ B
g i k : X D.⇒ Y
open E
open HomReasoning
open Functor F
[_]-commute : F₁ (C.id , g) ∘ F₁ (f , D.id) ≈ F₁ (f , D.id) ∘ F₁ (C.id , g)
[_]-commute {g = g} {f = f} = begin
F₁ (C.id , g) ∘ F₁ (f , D.id) ≈˘⟨ homomorphism ⟩
F₁ (C.id C.∘ f , g D.∘ D.id) ≈⟨ F-resp-≈ (MR.id-comm-sym C , MR.id-comm D) ⟩
F₁ (f C.∘ C.id , D.id D.∘ g) ≈⟨ homomorphism ⟩
F₁ (f , D.id) ∘ F₁ (C.id , g) ∎
[_]-decompose₁ : F₁ (f , g) ≈ F₁ (f , D.id) ∘ F₁ (C.id , g)
[_]-decompose₁ {f = f} {g = g} = begin
F₁ (f , g) ≈˘⟨ F-resp-≈ (C.identityʳ , D.identityˡ) ⟩
F₁ (f C.∘ C.id , D.id D.∘ g) ≈⟨ homomorphism ⟩
F₁ (f , D.id) ∘ F₁ (C.id , g) ∎
[_]-decompose₂ : F₁ (f , g) ≈ F₁ (C.id , g) ∘ F₁ (f , D.id)
[_]-decompose₂ {f = f} {g = g} = begin
F₁ (f , g) ≈˘⟨ F-resp-≈ (C.identityˡ , D.identityʳ) ⟩
F₁ (C.id C.∘ f , g D.∘ D.id) ≈⟨ homomorphism ⟩
F₁ (C.id , g) ∘ F₁ (f , D.id) ∎
[_]-merge : f C.∘ h C.≈ j → g D.∘ i D.≈ k → F₁ (f , g) ∘ F₁ (h , i) ≈ F₁ (j , k)
[_]-merge {f = f} {h = h} {j = j} {g = g} {i = i} {k = k} eq eq′ = begin
F₁ (f , g) ∘ F₁ (h , i) ≈˘⟨ homomorphism ⟩
F₁ (f C.∘ h , g D.∘ i) ≈⟨ F-resp-≈ (eq , eq′) ⟩
F₁ (j , k) ∎