{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pullback.Properties {o ℓ e} (C : Category o ℓ e) where
open import Function using (_$_)
open import Categories.Category.BinaryProducts C
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C hiding (up-to-iso)
open import Categories.Object.Product C hiding (up-to-iso)
open import Categories.Object.Terminal C hiding (up-to-iso)
open import Categories.Morphism C
open import Categories.Morphism.Reasoning C
open import Categories.Category.Complete.Finitely using (FinitelyComplete)
open import Data.Product using (∃; _,_)
private
open Category C
variable
X Y Z : Obj
f g h i : X ⇒ Y
open HomReasoning
open Equiv
pullback-self-mono : Mono f → IsPullback id id f f
pullback-self-mono mono = record
{ commute = refl
; universal = λ {X} {h₁} {h₂} eq → h₁
; p₁∘universal≈h₁ = identityˡ
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → identityˡ ○ mono h₁ h₂ eq
; unique-diagram = λ id∘h≈id∘i _ → introˡ refl ○ id∘h≈id∘i ○ elimˡ refl
}
module _ (t : Terminal) where
open Terminal t
pullback-⊤⇒product : Pullback (! {X}) (! {Y}) → Product X Y
pullback-⊤⇒product p = record
{ A×B = P
; π₁ = p₁
; π₂ = p₂
; ⟨_,_⟩ = λ f g → universal (!-unique₂ {f = ! ∘ f} {g = ! ∘ g})
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
product⇒pullback-⊤ : Product X Y → Pullback (! {X}) (! {Y})
product⇒pullback-⊤ p = record
{ p₁ = π₁
; p₂ = π₂
; isPullback = record
{ commute = !-unique₂
; universal = λ {_ f g} _ → ⟨ f , g ⟩
; p₁∘universal≈h₁ = project₁
; p₂∘universal≈h₂ = project₂
; unique-diagram = unique′
}
}
where open Product p
module _ (p : Pullback f g) where
open Pullback p
pullback-resp-≈ : f ≈ h → g ≈ i → Pullback h i
pullback-resp-≈ eq eq′ = record
{ p₁ = p₁
; p₂ = p₂
; isPullback = record
{ commute = ∘-resp-≈ˡ (⟺ eq) ○ commute ○ ∘-resp-≈ˡ eq′
; universal = λ eq″ → universal (∘-resp-≈ˡ eq ○ eq″ ○ ∘-resp-≈ˡ (⟺ eq′))
; p₁∘universal≈h₁ = p₁∘universal≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂
; unique-diagram = unique-diagram
}
}
module _ (p : Pullback id f) where
open Pullback p
pullback-identity : universal id-comm-sym ∘ p₂ ≈ id
pullback-identity = begin
universal id-comm-sym ∘ p₂ ≈⟨ unique ( pullˡ p₁∘universal≈h₁ ) (pullˡ p₂∘universal≈h₂) ⟩
universal eq ≈⟨ universal-resp-≈ (⟺ commute ○ identityˡ) identityˡ ⟩
universal commute ≈˘⟨ Pullback.id-unique p ⟩
id ∎
where
eq : id ∘ f ∘ p₂ ≈ f ∘ id ∘ p₂
eq = begin
(id ∘ f ∘ p₂) ≈⟨ elimˡ Equiv.refl ⟩
(f ∘ p₂) ≈˘⟨ refl⟩∘⟨ identityˡ ⟩
(f ∘ id ∘ p₂) ∎
module _ (pullbacks : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g)
(cartesian : Cartesian) where
open Cartesian cartesian
open BinaryProducts products using (⟨_,_⟩; π₁; π₂; ⟨⟩-cong₂; ⟨⟩∘; project₁; project₂)
pullback×cartesian⇒equalizer : Equalizer f g
pullback×cartesian⇒equalizer {f = f} {g = g} = record
{ arr = p.p₁
; isEqualizer = record
{ equality = equality
; equalize = λ {_ h} eq → p.universal $ begin
⟨ f , g ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ (identityˡ ○ eq) ⟩
⟨ id ∘ f ∘ h , id ∘ f ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ id , id ⟩ ∘ f ∘ h ∎
; universal = ⟺ p.p₁∘universal≈h₁
; unique = λ eq → p.unique (⟺ eq)
(⟺ (pullˡ eq′) ○ ⟺ (∘-resp-≈ʳ eq))
}
}
where p : Pullback ⟨ f , g ⟩ ⟨ id , id ⟩
p = pullbacks _ _
module p = Pullback p
eq : ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈ ⟨ p.p₂ , p.p₂ ⟩
eq = begin
⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ f , g ⟩ ∘ p.p₁ ≈⟨ p.commute ⟩
⟨ id , id ⟩ ∘ p.p₂ ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ p.p₂ , id ∘ p.p₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ p.p₂ , p.p₂ ⟩ ∎
eq′ : f ∘ p.p₁ ≈ p.p₂
eq′ = begin
f ∘ p.p₁ ≈˘⟨ project₁ ⟩
π₁ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈⟨ project₁ ⟩
p.p₂ ∎
equality : f ∘ p.p₁ ≈ g ∘ p.p₁
equality = begin
f ∘ p.p₁ ≈⟨ eq′ ⟩
p.p₂ ≈˘⟨ project₂ ⟩
π₂ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈˘⟨ refl⟩∘⟨ eq ⟩
π₂ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ project₂ ⟩
g ∘ p.p₁ ∎
pullback-⊤⇒FinitelyComplete : (∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g) → Terminal → FinitelyComplete C
pullback-⊤⇒FinitelyComplete pullbacks ⊤ = record
{ cartesian = cartesian
; equalizer = λ _ _ → pullback×cartesian⇒equalizer pullbacks cartesian
}
where
open Category hiding (Obj)
open Pullback
open Terminal ⊤ hiding (⊤)
_×_ : (A B : Obj) → Pullback (IsTerminal.! ⊤-is-terminal) (IsTerminal.! ⊤-is-terminal)
A × B = pullbacks (IsTerminal.! ⊤-is-terminal) (IsTerminal.! ⊤-is-terminal)
cartesian = record
{ terminal = ⊤
; products = record
{ product = λ {A B} → record
{ A×B = P {A}{_}{B} (A × B)
; π₁ = p₁ (A × B)
; π₂ = p₂ (A × B)
; ⟨_,_⟩ = λ _ _ → universal (A × B) (!-unique₂)
; project₁ = p₁∘universal≈h₁ (A × B)
; project₂ = p₂∘universal≈h₂ (A × B)
; unique = λ eq₁ eq₂ → Equiv.sym C (unique (A × B) eq₁ eq₂)
}
}
}
module IsoPb {X Y Z} {f : X ⇒ Z} {g : Y ⇒ Z} (pull₀ pull₁ : Pullback f g) where
open Pullback using (P; p₁; p₂; p₁∘universal≈h₁; p₂∘universal≈h₂; commute; universal)
P₀≅P₁ : P pull₀ ≅ P pull₁
P₀≅P₁ = up-to-iso pull₀ pull₁
P₀⇒P₁ : P pull₀ ⇒ P pull₁
P₀⇒P₁ = _≅_.from P₀≅P₁
p₁-≈ : p₁ pull₁ ∘ P₀⇒P₁ ≈ p₁ pull₀
p₁-≈ = p₁∘universal≈h₁ pull₁ {eq = commute pull₀}
p₂-≈ : p₂ pull₁ ∘ P₀⇒P₁ ≈ p₂ pull₀
p₂-≈ = p₂∘universal≈h₂ pull₁ {eq = commute pull₀}