{-# OPTIONS --without-K --safe #-}

open import Categories.Category

-- Various properties of Slice Categories
-- 1. Given a Product in a Slice cat, we cat get the pullback of the arrows
-- 2. Given that same pullback, can extract a Product
module Categories.Category.Slice.Properties {o  e} (C : Category o  e) where

open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Functor
open import Categories.Object.Product
open import Categories.Diagram.Pullback
open import Categories.Morphism.Reasoning C
open import Categories.Object.Terminal C
import Categories.Category.Slice as S

private
  module C = Category C

module _ {A : C.Obj} where
  open S C
  open Category (Slice A)
  open SliceObj
  open Slice⇒
  open C.HomReasoning
  open C.Equiv

  product⇒pullback :  {X Y : Obj}  Product (Slice A) X Y  Pullback C (arr X) (arr Y)
  product⇒pullback p = record
    { p₁              = h π₁
    ; p₂              = h π₂
    ; isPullback = record
      { commute         =  π₁   ( π₂)
      ; universal       = λ eq  h  slicearr eq , slicearr refl 
      ; unique          = λ {_ _ _ _ eq} eq′ eq″   (unique {h = slicearr (pushˡ ( ( π₁))  C.∘-resp-≈ʳ eq′  eq)} eq′ eq″)
      ; p₁∘universal≈h₁ = project₁
      ; p₂∘universal≈h₂ = project₂
      }
    }
    where open Product (Slice A) p

  pullback⇒product :  {X Y : Obj}  Pullback C (arr X) (arr Y)  Product (Slice A) X Y
  pullback⇒product {X} {Y} p = record
    { A×B      = sliceobj (arr Y C.∘ p₂)
    ; π₁       = slicearr commute
    ; π₂       = slicearr refl
    ; ⟨_,_⟩    = λ f g  slicearr (pullʳ (p₂∘universal≈h₂ {eq =  f   ( g)})   g)
    ; project₁ = p₁∘universal≈h₁
    ; project₂ = p₂∘universal≈h₂
    ; unique   = λ eq eq′   (unique eq eq′)
    }
    where open Pullback p

module _ (t : Terminal) where
  open S C
  open Terminal t
  open Category (Slice )
  open SliceObj
  open Slice⇒
  open C.HomReasoning

  lift :  {A B : C.Obj} (f : A C.⇒ B)  Slice⇒ (sliceobj (! {A})) (sliceobj (! {B}))
  lift f = slicearr {h = f} !-unique₂

  pullback⇒product′ :  {X Y : Obj}  Pullback C (arr X) (arr Y)  Product (Slice ) X Y
  pullback⇒product′ {X} {Y} p = record
    { A×B      = sliceobj !
    ; π₁       = slicearr {h = p₁} !-unique₂
    ; π₂       = slicearr {h = p₂} !-unique₂
    ; ⟨_,_⟩    = λ f g  slicearr {h = universal ( f   ( g))} !-unique₂
    ; project₁ = p₁∘universal≈h₁
    ; project₂ = p₂∘universal≈h₂
    ; unique   = λ eq eq′   (unique eq eq′)
    }
    where open Pullback p

-- slice of slice
module _ {A B} (f : A C.⇒ B) where
  private
    C/B : Category _ _ _
    C/B = S.Slice C B
    module C/B = Category C/B

    C/A : Category _ _ _
    C/A = S.Slice C A
    module C/A = Category C/A

    open C.HomReasoning
    open C.Equiv

  slice-slice⇒slice : Functor (S.Slice C/B (S.sliceobj f)) C/A
  slice-slice⇒slice = record
    { F₀           = λ { (S.sliceobj (S.slicearr {h} ))  S.sliceobj h }
    ; F₁           = λ { (S.slicearr )  S.slicearr  }
    ; identity     = refl
    ; homomorphism = refl
    ; F-resp-≈     = λ eq  eq
    }

  slice⇒slice-slice : Functor C/A (S.Slice C/B (S.sliceobj f))
  slice⇒slice-slice = record
    { F₀           = λ { (S.sliceobj arr)  S.sliceobj (S.slicearr {h = arr} refl) }
    ; F₁           = λ { (S.slicearr )  S.slicearr {h = S.slicearr (pullʳ )}  }
    ; identity     = refl
    ; homomorphism = refl
    ; F-resp-≈     = λ eq  eq
    }

  slice-slice≃slice : StrongEquivalence C/A (S.Slice C/B (S.sliceobj f))
  slice-slice≃slice = record
    { F            = slice⇒slice-slice
    ; G            = slice-slice⇒slice
    ; weak-inverse = record
      { F∘G≈id = record
        { F⇒G = record
          { η           = λ { (S.sliceobj (S.slicearr ))  S.slicearr {h = S.slicearr (C.identityʳ   )} C.identityʳ }
          ; commute     = λ _  id-comm-sym
          ; sym-commute = λ _  id-comm
          }
        ; F⇐G           = record
          { η           = λ { (S.sliceobj (S.slicearr ))  S.slicearr {h = S.slicearr (C.identityʳ  )} C.identityʳ }
          ; commute     = λ _  id-comm-sym
          ; sym-commute = λ _  id-comm
          }
        ; iso = λ _  record
          { isoˡ = C.identity²
          ; isoʳ = C.identity²
          }
        }
      ; G∘F≈id = record
        { F⇒G = record
          { η           = λ { (S.sliceobj arr)  S.slicearr C.identityʳ }
          ; commute     = λ _  id-comm-sym
          ; sym-commute = λ _  id-comm
          }
        ; F⇐G           = record
          { η           = λ { (S.sliceobj arr)  S.slicearr C.identityʳ }
          ; commute     = λ _  id-comm-sym
          ; sym-commute = λ _  id-comm
          }
        ; iso = λ _  record
          { isoˡ = C.identity²
          ; isoʳ = C.identity²
          }
        }
      }
    }