{-# OPTIONS --without-K --safe #-}
module Categories.Category.Monoidal.Construction.Minus2 where
open import Data.Product using (proj₁; proj₂)
open import Categories.Minus2-Category
open import Categories.Category.Monoidal
import Categories.Morphism as M
-2-Monoidal : ∀ {o ℓ e} → (C : -2-Category {o} {ℓ} {e}) → Monoidal (-2-Category.cat C)
-2-Monoidal C = record
{ ⊗ = record
{ F₀ = proj₁
; F₁ = proj₁
; identity = Hom-Conn
; homomorphism = Hom-Conn
; F-resp-≈ = λ _ → Hom-Conn
}
; unit = proj₁ Obj-Contr
; unitorˡ = λ {X} → proj₂ Obj-Contr X
; unitorʳ = M.≅.refl cat
; associator = M.≅.refl cat
; unitorˡ-commute-from = Hom-Conn
; unitorˡ-commute-to = Hom-Conn
; unitorʳ-commute-from = Hom-Conn
; unitorʳ-commute-to = Hom-Conn
; assoc-commute-from = Hom-Conn
; assoc-commute-to = Hom-Conn
; triangle = Hom-Conn
; pentagon = Hom-Conn
}
where
open -2-Category C