{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Sets where
open import Level
open import Relation.Binary
open import Function using (_∘′_) renaming (id to idf)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
open import Categories.Category
Sets : ∀ o → Category (suc o) o o
Sets o = record
{ Obj = Set o
; _⇒_ = λ c d → c → d
; _≈_ = _≗_
; id = idf
; _∘_ = _∘′_
; assoc = λ _ → ≡.refl
; sym-assoc = λ _ → ≡.refl
; identityˡ = λ _ → ≡.refl
; identityʳ = λ _ → ≡.refl
; identity² = λ _ → ≡.refl
; equiv = record
{ refl = λ _ → ≡.refl
; sym = λ eq x → ≡.sym (eq x)
; trans = λ eq₁ eq₂ x → ≡.trans (eq₁ x) (eq₂ x)
}
; ∘-resp-≈ = resp
}
where resp : ∀ {A B C : Set o} {f h : B → C} {g i : A → B} →
(f ≗ h) → (g ≗ i) → f ∘′ g ≗ h ∘′ i
resp {h = h} eq₁ eq₂ x = ≡.trans (eq₁ _) (≡.cong h (eq₂ x))