{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Construction.Spans {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Categories.Category.Diagram.Span 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open HomReasoning open Equiv open Span open Span⇒ Spans : Obj → Obj → Category (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) e Spans X Y = record { Obj = Span X Y ; _⇒_ = Span⇒ ; _≈_ = λ f g → arr f ≈ arr g ; id = id-span⇒ ; _∘_ = _∘ₛ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ }