{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Construction.Spans {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Category.Diagram.Span 𝒞
open import Categories.Morphism.Reasoning 𝒞
open Category 𝒞
open HomReasoning
open Equiv
open Span
open Span⇒
Spans : Obj → Obj → Category (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) e
Spans X Y = record
{ Obj = Span X Y
; _⇒_ = Span⇒
; _≈_ = λ f g → arr f ≈ arr g
; id = id-span⇒
; _∘_ = _∘ₛ_
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}