{-# OPTIONS_GHC -Wunused-imports #-}
{-# LANGUAGE NondecreasingIndentation #-}
module Agda.TypeChecking.Rules.LHS.Unify
( UnificationResult
, UnificationResult'(..)
, NoLeftInv(..)
, unifyIndices'
, unifyIndices ) where
import Prelude hiding (null)
import Control.Monad.State ( gets, modify, evalStateT )
import Control.Monad.Writer ( WriterT(..), MonadWriter(..) )
import Control.Monad.Except ( runExceptT )
import Data.Semigroup hiding (Arg)
import qualified Data.List as List
import qualified Data.IntSet as IntSet
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Agda.Benchmarking as Bench
import Agda.Interaction.Options (optInjectiveTypeConstructors)
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.TypeChecking.Monad
import qualified Agda.TypeChecking.Monad.Benchmark as Bench
import Agda.TypeChecking.Conversion.Pure (pureEqualTermB, pureEqualTypeB)
import Agda.TypeChecking.Constraints ()
import Agda.TypeChecking.Datatypes
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Reduce
import qualified Agda.TypeChecking.Patterns.Match as Match
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Free
import Agda.TypeChecking.Free.Precompute
import Agda.TypeChecking.Free.Reduce
import Agda.TypeChecking.Records
import Agda.TypeChecking.Rules.LHS.Problem
import Agda.TypeChecking.Rules.LHS.Unify.Types
import Agda.TypeChecking.Rules.LHS.Unify.LeftInverse
import Agda.Utils.Either
import Agda.Utils.Function
import Agda.Utils.Functor
import Agda.Utils.List
import Agda.Utils.ListT
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Null
import Agda.Utils.PartialOrd
import Agda.Utils.Singleton
import Agda.Utils.Size
import Agda.Utils.Impossible
type UnificationResult = UnificationResult'
( Telescope
, PatternSubstitution
, [NamedArg DeBruijnPattern]
)
type FullUnificationResult = UnificationResult'
( Telescope
, PatternSubstitution
, [NamedArg DeBruijnPattern]
, Either NoLeftInv (Substitution, Substitution)
)
data UnificationResult' a
= Unifies a
| NoUnify NegativeUnification
| UnifyBlocked Blocker
| UnifyStuck [UnificationFailure]
deriving (Nat -> UnificationResult' a -> ShowS
[UnificationResult' a] -> ShowS
UnificationResult' a -> String
(Nat -> UnificationResult' a -> ShowS)
-> (UnificationResult' a -> String)
-> ([UnificationResult' a] -> ShowS)
-> Show (UnificationResult' a)
forall a. Show a => Nat -> UnificationResult' a -> ShowS
forall a. Show a => [UnificationResult' a] -> ShowS
forall a. Show a => UnificationResult' a -> String
forall a.
(Nat -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Nat -> UnificationResult' a -> ShowS
showsPrec :: Nat -> UnificationResult' a -> ShowS
$cshow :: forall a. Show a => UnificationResult' a -> String
show :: UnificationResult' a -> String
$cshowList :: forall a. Show a => [UnificationResult' a] -> ShowS
showList :: [UnificationResult' a] -> ShowS
Show, (forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b)
-> (forall a b. a -> UnificationResult' b -> UnificationResult' a)
-> Functor UnificationResult'
forall a b. a -> UnificationResult' b -> UnificationResult' a
forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
fmap :: forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
$c<$ :: forall a b. a -> UnificationResult' b -> UnificationResult' a
<$ :: forall a b. a -> UnificationResult' b -> UnificationResult' a
Functor, (forall m. Monoid m => UnificationResult' m -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. UnificationResult' a -> [a])
-> (forall a. UnificationResult' a -> Bool)
-> (forall a. UnificationResult' a -> Nat)
-> (forall a. Eq a => a -> UnificationResult' a -> Bool)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> Foldable UnificationResult'
forall a. Eq a => a -> UnificationResult' a -> Bool
forall a. Num a => UnificationResult' a -> a
forall a. Ord a => UnificationResult' a -> a
forall m. Monoid m => UnificationResult' m -> m
forall a. UnificationResult' a -> Bool
forall a. UnificationResult' a -> Nat
forall a. UnificationResult' a -> [a]
forall a. (a -> a -> a) -> UnificationResult' a -> a
forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Nat)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
$cfold :: forall m. Monoid m => UnificationResult' m -> m
fold :: forall m. Monoid m => UnificationResult' m -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
foldMap' :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
$cfoldr :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldl' :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldr1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldr1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldl1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
$ctoList :: forall a. UnificationResult' a -> [a]
toList :: forall a. UnificationResult' a -> [a]
$cnull :: forall a. UnificationResult' a -> Bool
null :: forall a. UnificationResult' a -> Bool
$clength :: forall a. UnificationResult' a -> Nat
length :: forall a. UnificationResult' a -> Nat
$celem :: forall a. Eq a => a -> UnificationResult' a -> Bool
elem :: forall a. Eq a => a -> UnificationResult' a -> Bool
$cmaximum :: forall a. Ord a => UnificationResult' a -> a
maximum :: forall a. Ord a => UnificationResult' a -> a
$cminimum :: forall a. Ord a => UnificationResult' a -> a
minimum :: forall a. Ord a => UnificationResult' a -> a
$csum :: forall a. Num a => UnificationResult' a -> a
sum :: forall a. Num a => UnificationResult' a -> a
$cproduct :: forall a. Num a => UnificationResult' a -> a
product :: forall a. Num a => UnificationResult' a -> a
Foldable, Functor UnificationResult'
Foldable UnificationResult'
(Functor UnificationResult', Foldable UnificationResult') =>
(forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b))
-> (forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b))
-> (forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a))
-> Traversable UnificationResult'
forall (t :: * -> *).
(Functor t, Foldable t) =>
(forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
$csequence :: forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
sequence :: forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
Traversable)
unifyIndices
:: Maybe NoLeftInv
-> Telescope
-> FlexibleVars
-> Type
-> Args
-> Args
-> TCM UnificationResult
unifyIndices :: Maybe NoLeftInv
-> Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> TCM UnificationResult
unifyIndices Maybe NoLeftInv
linv Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs =
Account (BenchPhase TCM)
-> TCM UnificationResult -> TCM UnificationResult
forall (m :: * -> *) c.
MonadBench m =>
Account (BenchPhase m) -> m c -> m c
Bench.billTo [BenchPhase TCM
Phase
Bench.Typing, BenchPhase TCM
Phase
Bench.CheckLHS, BenchPhase TCM
Phase
Bench.UnifyIndices] (TCM UnificationResult -> TCM UnificationResult)
-> TCM UnificationResult -> TCM UnificationResult
forall a b. (a -> b) -> a -> b
$
((Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> (Telescope, PatternSubstitution,
[NamedArg (Pattern' DBPatVar)]))
-> UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> UnificationResult
forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\(Telescope
a,PatternSubstitution
b,[NamedArg (Pattern' DBPatVar)]
c,Either NoLeftInv (Substitution, Substitution)
_) -> (Telescope
a,PatternSubstitution
b,[NamedArg (Pattern' DBPatVar)]
c)) (UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> UnificationResult)
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution)))
-> TCM UnificationResult
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe NoLeftInv
-> Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution)))
unifyIndices' Maybe NoLeftInv
linv Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs
unifyIndices'
:: Maybe NoLeftInv
-> Telescope
-> FlexibleVars
-> Type
-> Args
-> Args
-> TCM FullUnificationResult
unifyIndices' :: Maybe NoLeftInv
-> Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution)))
unifyIndices' Maybe NoLeftInv
linv Telescope
tel FlexibleVars
flex Type
a [] [] = UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution)))
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))))
-> UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> TCMT
IO
(UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution)))
forall a b. (a -> b) -> a -> b
$ (Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
-> UnificationResult'
(Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)],
Either NoLeftInv (Substitution, Substitution))
forall a. a -> UnificationResult' a
Unifies (Telescope
tel, PatternSubstitution
forall a. Substitution' a
idS, [], (Substitution, Substitution)
-> Either NoLeftInv (Substitution, Substitution)
forall a b. b -> Either a b
Right (Substitution
forall a. Substitution' a
idS, Nat -> Substitution
forall a. Nat -> Substitution' a
raiseS Nat
1))
unifyIndices' Maybe NoLeftInv
linv Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs = do
String -> Nat -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
10 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$
[TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"unifyIndices"
, (TCMT IO Doc
"tel =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Telescope -> m Doc
prettyTCM Telescope
tel
, (TCMT IO Doc
"flex =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> String -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Nat] -> String
forall a. Show a => a -> String
show ([Nat] -> String) -> [Nat] -> String
forall a b. (a -> b) -> a -> b
$ (FlexibleVar Nat -> Nat) -> FlexibleVars -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map FlexibleVar Nat -> Nat
forall a. FlexibleVar a -> a
flexVar FlexibleVars
flex
, (TCMT IO Doc
"a =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => m Doc -> m Doc
parens (Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a)
, (TCMT IO Doc
"us =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCMT IO Doc] -> TCMT IO Doc) -> [TCMT IO Doc] -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCMT IO Doc) -> [Arg Term] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Arg Term -> m Doc
prettyTCM [Arg Term]
us
, (TCMT IO Doc
"vs =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCMT IO Doc] -> TCMT IO Doc) -> [TCMT IO Doc] -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCMT IO Doc) -> [Arg Term] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Arg Term -> m Doc
prettyTCM [Arg Term]
vs
]
initialState <- Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> TCMT IO UnifyState
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> m UnifyState
initUnifyState Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs
reportSDoc "tc.lhs.unify" 20 $ "initial unifyState:" <+> prettyTCM initialState
(result,log) <- runUnifyLogT $ unify initialState rightToLeftStrategy
forM result $ \ UnifyState
s -> do
let output :: UnifyOutput
output = [UnifyOutput] -> UnifyOutput
forall a. Monoid a => [a] -> a
mconcat [UnifyOutput
output | (UnificationStep UnifyState
_ UnifyStep
_ UnifyOutput
output,UnifyState
_) <- UnifyLog
log ]
let ps :: [NamedArg (Pattern' DBPatVar)]
ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (UnifyOutput -> PatternSubstitution
unifyProof UnifyOutput
output) ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs (UnifyState -> Telescope
eqTel UnifyState
initialState)
tauInv <- do
strict <- (TCEnv -> Bool) -> TCMT IO Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envSplitOnStrict
cubicalCompatible <- cubicalCompatibleOption
withoutK <- withoutKOption
case linv of
Just NoLeftInv
reason -> Either NoLeftInv (Substitution, Substitution)
-> TCMT IO (Either NoLeftInv (Substitution, Substitution))
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (NoLeftInv -> Either NoLeftInv (Substitution, Substitution)
forall a b. a -> Either a b
Left NoLeftInv
reason)
Maybe NoLeftInv
Nothing
| Bool
strict -> Either NoLeftInv (Substitution, Substitution)
-> TCMT IO (Either NoLeftInv (Substitution, Substitution))
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (NoLeftInv -> Either NoLeftInv (Substitution, Substitution)
forall a b. a -> Either a b
Left NoLeftInv
SplitOnStrict)
| Bool
cubicalCompatible -> UnifyState
-> UnifyLog
-> TCMT IO (Either NoLeftInv (Substitution, Substitution))
forall (tcm :: * -> *).
(PureTCM tcm, MonadError TCErr tcm) =>
UnifyState
-> UnifyLog -> tcm (Either NoLeftInv (Substitution, Substitution))
buildLeftInverse UnifyState
initialState UnifyLog
log
| Bool
withoutK -> Either NoLeftInv (Substitution, Substitution)
-> TCMT IO (Either NoLeftInv (Substitution, Substitution))
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (NoLeftInv -> Either NoLeftInv (Substitution, Substitution)
forall a b. a -> Either a b
Left NoLeftInv
NoCubical)
| Bool
otherwise -> Either NoLeftInv (Substitution, Substitution)
-> TCMT IO (Either NoLeftInv (Substitution, Substitution))
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (NoLeftInv -> Either NoLeftInv (Substitution, Substitution)
forall a b. a -> Either a b
Left NoLeftInv
WithKEnabled)
reportSDoc "tc.lhs.unify" 20 $ "ps:" <+> pretty ps
return $ (varTel s, unifySubst output, ps, tauInv)
type UnifyStrategy = UnifyState -> ListT TCM UnifyStep
rightToLeftStrategy :: UnifyStrategy
rightToLeftStrategy :: UnifyStrategy
rightToLeftStrategy UnifyState
s =
[ListT TCM UnifyStep] -> ListT TCM UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([Nat] -> (Nat -> ListT TCM UnifyStep) -> [ListT TCM UnifyStep]
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
for (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
n) ((Nat -> ListT TCM UnifyStep) -> [ListT TCM UnifyStep])
-> (Nat -> ListT TCM UnifyStep) -> [ListT TCM UnifyStep]
forall a b. (a -> b) -> a -> b
$ \Nat
k -> Nat -> UnifyStrategy
completeStrategyAt Nat
k UnifyState
s)
where n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size (Telescope -> Nat) -> Telescope -> Nat
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
completeStrategyAt :: Int -> UnifyStrategy
completeStrategyAt :: Nat -> UnifyStrategy
completeStrategyAt Nat
k UnifyState
s = [ListT TCM UnifyStep] -> ListT TCM UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([ListT TCM UnifyStep] -> ListT TCM UnifyStep)
-> [ListT TCM UnifyStep] -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ ((Nat -> UnifyStrategy) -> ListT TCM UnifyStep)
-> [Nat -> UnifyStrategy] -> [ListT TCM UnifyStep]
forall a b. (a -> b) -> [a] -> [b]
map (\Nat -> UnifyStrategy
strat -> Nat -> UnifyStrategy
strat Nat
k UnifyState
s) ([Nat -> UnifyStrategy] -> [ListT TCM UnifyStep])
-> [Nat -> UnifyStrategy] -> [ListT TCM UnifyStep]
forall a b. (a -> b) -> a -> b
$
[ (\Nat
n -> Nat -> UnifyStrategy
skipIrrelevantStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
basicUnifyStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
literalStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
dataStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
etaExpandVarStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
etaExpandEquationStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
injectiveTypeConStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
injectivePragmaStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
simplifySizesStrategy Nat
n)
, (\Nat
n -> Nat -> UnifyStrategy
checkEqualityStrategy Nat
n)
]
isHom :: (Free a, Subst a) => Int -> a -> Maybe a
isHom :: forall a. (Free a, Subst a) => Nat -> a -> Maybe a
isHom Nat
n a
x = do
Bool -> Maybe ()
forall b (m :: * -> *). (IsBool b, MonadPlus m) => b -> m ()
guard (Bool -> Maybe ()) -> Bool -> Maybe ()
forall a b. (a -> b) -> a -> b
$ All -> Bool
getAll (All -> Bool) -> All -> Bool
forall a b. (a -> b) -> a -> b
$ SingleVar All -> IgnoreSorts -> a -> All
forall a c t.
(IsVarSet a c, Free t) =>
SingleVar c -> IgnoreSorts -> t -> c
runFree (Bool -> All
All (Bool -> All) -> (Nat -> Bool) -> SingleVar All
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
>= Nat
n)) IgnoreSorts
IgnoreNot a
x
a -> Maybe a
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$ Nat -> a -> a
forall a. Subst a => Nat -> a -> a
raise (-Nat
n) a
x
findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible :: Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
i FlexibleVars
flex = (FlexibleVar Nat -> Bool)
-> FlexibleVars -> Maybe (FlexibleVar Nat)
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find ((Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
==) (Nat -> Bool)
-> (FlexibleVar Nat -> Nat) -> FlexibleVar Nat -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FlexibleVar Nat -> Nat
forall a. FlexibleVar a -> a
flexVar) FlexibleVars
flex
basicUnifyStrategy :: Int -> UnifyStrategy
basicUnifyStrategy :: Nat -> UnifyStrategy
basicUnifyStrategy Nat
k UnifyState
s = do
Equal dom@Dom{unDom = a} u v <- Equality -> ListT TCM Equality
forall (m :: * -> *).
(HasBuiltins m, HasOptions m) =>
Equality -> m Equality
eqUnLevel (Nat -> UnifyState -> Equality
getEquality Nat
k UnifyState
s)
ha <- fromMaybeMP $ isHom n a
(mi, mj) <- addContext (varTel s) $ (,) <$> isEtaVar u ha <*> isEtaVar v ha
reportSDoc "tc.lhs.unify" 30 $ "isEtaVar results: " <+> text (show [mi,mj])
case (mi, mj) of
(Just Nat
i, Just Nat
j)
| Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
(Just Nat
i, Just Nat
j)
| Just FlexibleVar Nat
fi <- Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
i FlexibleVars
flex
, Just FlexibleVar Nat
fj <- Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
j FlexibleVars
flex -> do
let choice :: FlexChoice
choice = FlexibleVar Nat -> FlexibleVar Nat -> FlexChoice
forall a. ChooseFlex a => a -> a -> FlexChoice
chooseFlex FlexibleVar Nat
fi FlexibleVar Nat
fj
firstTryLeft :: ListT TCM UnifyStep
firstTryLeft = [ListT TCM UnifyStep] -> ListT TCM UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fi Term
v Either () ()
forall {b}. Either () b
left)
, UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fj Term
u Either () ()
forall {a}. Either a ()
right)]
firstTryRight :: ListT TCM UnifyStep
firstTryRight = [ListT TCM UnifyStep] -> ListT TCM UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fj Term
u Either () ()
forall {a}. Either a ()
right)
, UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fi Term
v Either () ()
forall {b}. Either () b
left)]
String -> Nat -> TCMT IO Doc -> ListT TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
40 (TCMT IO Doc -> ListT TCM ()) -> TCMT IO Doc -> ListT TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"fi = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Nat -> String
forall a. Show a => a -> String
show FlexibleVar Nat
fi)
String -> Nat -> TCMT IO Doc -> ListT TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
40 (TCMT IO Doc -> ListT TCM ()) -> TCMT IO Doc -> ListT TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"fj = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Nat -> String
forall a. Show a => a -> String
show FlexibleVar Nat
fj)
String -> Nat -> TCMT IO Doc -> ListT TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
40 (TCMT IO Doc -> ListT TCM ()) -> TCMT IO Doc -> ListT TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"chooseFlex: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexChoice -> String
forall a. Show a => a -> String
show FlexChoice
choice)
case FlexChoice
choice of
FlexChoice
ChooseLeft -> ListT TCM UnifyStep
firstTryLeft
FlexChoice
ChooseRight -> ListT TCM UnifyStep
firstTryRight
FlexChoice
ExpandBoth -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
FlexChoice
ChooseEither -> ListT TCM UnifyStep
firstTryRight
(Just Nat
i, Maybe Nat
_)
| Just FlexibleVar Nat
fi <- Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
i FlexibleVars
flex -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fi Term
v Either () ()
forall {b}. Either () b
left
(Maybe Nat
_, Just Nat
j)
| Just FlexibleVar Nat
fj <- Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
j FlexibleVars
flex -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat
-> Dom Type -> FlexibleVar Nat -> Term -> Either () () -> UnifyStep
Solution Nat
k Dom Type
dom{unDom = ha} FlexibleVar Nat
fj Term
u Either () ()
forall {a}. Either a ()
right
(Maybe Nat, Maybe Nat)
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
where
flex :: FlexibleVars
flex = UnifyState -> FlexibleVars
flexVars UnifyState
s
n :: Nat
n = UnifyState -> Nat
eqCount UnifyState
s
left :: Either () b
left = () -> Either () b
forall a b. a -> Either a b
Left (); right :: Either a ()
right = () -> Either a ()
forall a b. b -> Either a b
Right ()
dataStrategy :: Int -> UnifyStrategy
dataStrategy :: Nat -> UnifyStrategy
dataStrategy Nat
k UnifyState
s = do
Equal Dom{unDom = a} u v <- Equality -> ListT TCM Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqConstructorForm (Equality -> ListT TCM Equality)
-> ListT TCM Equality -> ListT TCM Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Equality -> ListT TCM Equality
forall (m :: * -> *).
(HasBuiltins m, HasOptions m) =>
Equality -> m Equality
eqUnLevel (Equality -> ListT TCM Equality)
-> ListT TCM Equality -> ListT TCM Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Nat -> UnifyState -> ListT TCM Equality
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> UnifyState -> m Equality
getReducedEqualityUnraised Nat
k UnifyState
s
sortOk <- reduce (getSort a) <&> \case
Type{} -> Bool
True
Inf{} -> Bool
True
SSet{} -> Bool
True
Sort
_ -> Bool
False
case unEl a of
Def QName
d Elims
es | Bool
sortOk -> do
npars <- ListT TCM (Maybe Nat) -> ListT TCM Nat
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (ListT TCM (Maybe Nat) -> ListT TCM Nat)
-> ListT TCM (Maybe Nat) -> ListT TCM Nat
forall a b. (a -> b) -> a -> b
$ QName -> ListT TCM (Maybe Nat)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Nat)
getNumberOfParameters QName
d
let (pars,ixs) = splitAt npars $ fromMaybe __IMPOSSIBLE__ $ allApplyElims es
reportSDoc "tc.lhs.unify" 40 $ addContext (varTel s `abstract` eqTel s) $
"Found equation at datatype " <+> prettyTCM d
<+> " with parameters " <+> prettyTCM (raise (size (eqTel s) - k) pars)
case (u, v) of
(Con ConHead
c ConInfo
_ Elims
_ , Con ConHead
c' ConInfo
_ Elims
_ ) | ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
c' -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat
-> Type
-> QName
-> [Arg Term]
-> [Arg Term]
-> ConHead
-> UnifyStep
Injectivity Nat
k Type
a QName
d [Arg Term]
pars [Arg Term]
ixs ConHead
c
(Con ConHead
c ConInfo
_ Elims
_ , Con ConHead
c' ConInfo
_ Elims
_ ) -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> QName -> [Arg Term] -> Term -> Term -> UnifyStep
Conflict Nat
k Type
a QName
d [Arg Term]
pars Term
u Term
v
(Var Nat
i [] , Term
v ) -> Nat -> Term -> ListT TCM UnifyStep -> ListT TCM UnifyStep
forall {m :: * -> *} {a} {b}.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Nat -> a -> m b -> m b
ifOccursStronglyRigid Nat
i Term
v (ListT TCM UnifyStep -> ListT TCM UnifyStep)
-> ListT TCM UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> QName -> [Arg Term] -> Nat -> Term -> UnifyStep
Cycle Nat
k Type
a QName
d [Arg Term]
pars Nat
i Term
v
(Term
u , Var Nat
j [] ) -> Nat -> Term -> ListT TCM UnifyStep -> ListT TCM UnifyStep
forall {m :: * -> *} {a} {b}.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Nat -> a -> m b -> m b
ifOccursStronglyRigid Nat
j Term
u (ListT TCM UnifyStep -> ListT TCM UnifyStep)
-> ListT TCM UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> QName -> [Arg Term] -> Nat -> Term -> UnifyStep
Cycle Nat
k Type
a QName
d [Arg Term]
pars Nat
j Term
u
(Term, Term)
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
Term
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
where
ifOccursStronglyRigid :: Nat -> a -> m b -> m b
ifOccursStronglyRigid Nat
i a
u m b
ret = do
(_ , u) <- IntSet -> a -> m (IntMap IsFree, a)
forall a (m :: * -> *).
(ForceNotFree a, Reduce a, MonadReduce m) =>
IntSet -> a -> m (IntMap IsFree, a)
forceNotFree (Nat -> IntSet
forall el coll. Singleton el coll => el -> coll
singleton Nat
i) a
u
case flexRigOccurrenceIn i u of
Just FlexRig
StronglyRigid -> m b
ret
Maybe FlexRig
_ -> m b
forall a. m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
checkEqualityStrategy :: Int -> UnifyStrategy
checkEqualityStrategy :: Nat -> UnifyStrategy
checkEqualityStrategy Nat
k UnifyState
s = do
let Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Nat -> UnifyState -> Equality
getEquality Nat
k UnifyState
s
n :: Nat
n = UnifyState -> Nat
eqCount UnifyState
s
ha <- Maybe Type -> ListT TCM Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> ListT TCM Type) -> Maybe Type -> ListT TCM Type
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> Maybe Type
forall a. (Free a, Subst a) => Nat -> a -> Maybe a
isHom Nat
n Type
a
return $ Deletion k ha u v
literalStrategy :: Int -> UnifyStrategy
literalStrategy :: Nat -> UnifyStrategy
literalStrategy Nat
k UnifyState
s = do
let n :: Nat
n = UnifyState -> Nat
eqCount UnifyState
s
Equal Dom{unDom = a} u v <- Equality -> ListT TCM Equality
forall (m :: * -> *).
(HasBuiltins m, HasOptions m) =>
Equality -> m Equality
eqUnLevel (Equality -> ListT TCM Equality) -> Equality -> ListT TCM Equality
forall a b. (a -> b) -> a -> b
$ Nat -> UnifyState -> Equality
getEquality Nat
k UnifyState
s
ha <- fromMaybeMP $ isHom n a
(u, v) <- reduce (u, v)
case (u , v) of
(Lit Literal
l1 , Lit Literal
l2)
| Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l2 -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> Term -> Term -> UnifyStep
Deletion Nat
k Type
ha Term
u Term
v
| Bool
otherwise -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Type -> Literal -> Literal -> UnifyStep
LitConflict Nat
k Type
ha Literal
l1 Literal
l2
(Term, Term)
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
etaExpandVarStrategy :: Int -> UnifyStrategy
etaExpandVarStrategy :: Nat -> UnifyStrategy
etaExpandVarStrategy Nat
k UnifyState
s = do
Equal Dom{unDom = a} u v <- Equality -> ListT TCM Equality
forall (m :: * -> *).
(HasBuiltins m, HasOptions m) =>
Equality -> m Equality
eqUnLevel (Equality -> ListT TCM Equality)
-> ListT TCM Equality -> ListT TCM Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Nat -> UnifyState -> ListT TCM Equality
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> UnifyState -> m Equality
getReducedEquality Nat
k UnifyState
s
shouldEtaExpand u v a s `mplus` shouldEtaExpand v u a s
where
shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand (Var Nat
i Elims
es) Term
v Type
a UnifyState
s = do
fi <- Maybe (FlexibleVar Nat) -> ListT TCM (FlexibleVar Nat)
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe (FlexibleVar Nat) -> ListT TCM (FlexibleVar Nat))
-> Maybe (FlexibleVar Nat) -> ListT TCM (FlexibleVar Nat)
forall a b. (a -> b) -> a -> b
$ Nat -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible Nat
i (UnifyState -> FlexibleVars
flexVars UnifyState
s)
reportSDoc "tc.lhs.unify" 50 $
"Found flexible variable " <+> text (show i)
let k = UnifyState -> Nat
varCount UnifyState
s Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1 Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
i
b0 = Dom Type -> Type
forall t e. Dom' t e -> e
unDom (Dom Type -> Type) -> Dom Type -> Type
forall a b. (a -> b) -> a -> b
$ Nat -> UnifyState -> Dom Type
getVarTypeUnraised Nat
k UnifyState
s
b <- addContext (telFromList $ take k $ telToList $ varTel s) $ reduce b0
(d, pars) <- catMaybesMP $ isEtaRecordType b
ps <- fromMaybeMP $ allProjElims es
guard =<< orM
[ pure $ not $ null ps
, isRecCon v
, (Right True ==) <$> runBlocked (isSingletonRecord d pars)
]
reportSDoc "tc.lhs.unify" 50 $
"with projections " <+> prettyTCM (map snd ps)
reportSDoc "tc.lhs.unify" 50 $
"at record type " <+> prettyTCM d
return $ EtaExpandVar fi d pars
shouldEtaExpand Term
_ Term
_ Type
_ UnifyState
_ = ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
isRecCon :: Term -> f Bool
isRecCon (Con ConHead
c ConInfo
_ Elims
_) = Maybe (QName, RecordData) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, RecordData) -> Bool)
-> f (Maybe (QName, RecordData)) -> f Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> f (Maybe (QName, RecordData))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, RecordData))
isRecordConstructor (ConHead -> QName
conName ConHead
c)
isRecCon Term
_ = Bool -> f Bool
forall a. a -> f a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
etaExpandEquationStrategy :: Int -> UnifyStrategy
etaExpandEquationStrategy :: Nat -> UnifyStrategy
etaExpandEquationStrategy Nat
k UnifyState
s = do
Equal Dom{unDom = a} u v <- Nat -> UnifyState -> ListT TCM Equality
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> UnifyState -> m Equality
getReducedEqualityUnraised Nat
k UnifyState
s
(d, pars) <- catMaybesMP $ addContext tel $ isEtaRecordType a
guard =<< orM
[ (Right True ==) <$> runBlocked (isSingletonRecord d pars)
, shouldProject u
, shouldProject v
]
return $ EtaExpandEquation k d pars
where
shouldProject :: PureTCM m => Term -> m Bool
shouldProject :: forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject = \case
Def QName
f Elims
es -> QName -> m Bool
forall (m :: * -> *).
(HasConstInfo m, HasBuiltins m) =>
QName -> m Bool
usesCopatterns QName
f
Con ConHead
c ConInfo
_ Elims
_ -> Maybe (QName, RecordData) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, RecordData) -> Bool)
-> m (Maybe (QName, RecordData)) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe (QName, RecordData))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, RecordData))
isRecordConstructor (ConHead -> QName
conName ConHead
c)
Var Nat
_ Elims
_ -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Lam ArgInfo
_ Abs Term
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Lit Literal
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Pi Dom Type
_ Abs Type
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Sort Sort
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Level Level
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
MetaV MetaId
_ Elims
_ -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
DontCare Term
_ -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Dummy String
s Elims
_ -> String -> m Bool
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
String -> m a
__IMPOSSIBLE_VERBOSE__ String
s
tel :: Telescope
tel = UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` ListTel -> Telescope
telFromList (Nat -> ListTel -> ListTel
forall a. Nat -> [a] -> [a]
take Nat
k (ListTel -> ListTel) -> ListTel -> ListTel
forall a b. (a -> b) -> a -> b
$ Telescope -> ListTel
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> ListTel) -> Telescope -> ListTel
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s)
simplifySizesStrategy :: Int -> UnifyStrategy
simplifySizesStrategy :: Nat -> UnifyStrategy
simplifySizesStrategy Nat
k UnifyState
s = do
isSizeName <- ListT TCM (QName -> Bool)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
m (QName -> Bool)
isSizeNameTest
Equal Dom{unDom = a} u v <- getReducedEquality k s
case unEl a of
Def QName
d Elims
_ -> do
Bool -> ListT TCM ()
forall b (m :: * -> *). (IsBool b, MonadPlus m) => b -> m ()
guard (Bool -> ListT TCM ()) -> Bool -> ListT TCM ()
forall a b. (a -> b) -> a -> b
$ QName -> Bool
isSizeName QName
d
su <- Term -> ListT TCM SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
u
sv <- sizeView v
case (su, sv) of
(SizeSuc Term
u, SizeSuc Term
v) -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Term -> Term -> UnifyStep
StripSizeSuc Nat
k Term
u Term
v
(SizeSuc Term
u, SizeView
SizeInf ) -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Term -> Term -> UnifyStep
StripSizeSuc Nat
k Term
u Term
v
(SizeView
SizeInf , SizeSuc Term
v) -> UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> Term -> Term -> UnifyStep
StripSizeSuc Nat
k Term
u Term
v
(SizeView, SizeView)
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
Term
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
injectiveTypeConStrategy :: Int -> UnifyStrategy
injectiveTypeConStrategy :: Nat -> UnifyStrategy
injectiveTypeConStrategy Nat
k UnifyState
s = do
injTyCon <- PragmaOptions -> Bool
optInjectiveTypeConstructors (PragmaOptions -> Bool)
-> ListT TCM PragmaOptions -> ListT TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ListT TCM PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
guard injTyCon
eq <- eqUnLevel =<< getReducedEquality k s
case eq of
Equal Dom Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
def <- QName -> ListT TCM Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
guard $ case theDef def of
Datatype{} -> Bool
True
Record{} -> Bool
True
Axiom{} -> Bool
True
DataOrRecSig{} -> Bool
True
AbstractDefn{} -> Bool
False
Function{} -> Bool
False
Primitive{} -> Bool
False
PrimitiveSort{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
GeneralizableVar{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
Constructor{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
let us = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
vs = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
return $ TypeConInjectivity k d us vs
Equality
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
injectivePragmaStrategy :: Int -> UnifyStrategy
injectivePragmaStrategy :: Nat -> UnifyStrategy
injectivePragmaStrategy Nat
k UnifyState
s = do
eq <- Equality -> ListT TCM Equality
forall (m :: * -> *).
(HasBuiltins m, HasOptions m) =>
Equality -> m Equality
eqUnLevel (Equality -> ListT TCM Equality)
-> ListT TCM Equality -> ListT TCM Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Nat -> UnifyState -> ListT TCM Equality
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> UnifyState -> m Equality
getReducedEquality Nat
k UnifyState
s
case eq of
Equal Dom Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
def <- QName -> ListT TCM Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
guard $ defInjective def
let us = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
vs = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
return $ TypeConInjectivity k d us vs
Equality
_ -> ListT TCM UnifyStep
forall a. ListT TCM a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
skipIrrelevantStrategy :: Int -> UnifyStrategy
skipIrrelevantStrategy :: Nat -> UnifyStrategy
skipIrrelevantStrategy Nat
k UnifyState
s = do
let Equal Dom Type
a Term
_ Term
_ = Nat -> UnifyState -> Equality
getEquality Nat
k UnifyState
s
Telescope -> ListT TCM () -> ListT TCM ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) (ListT TCM () -> ListT TCM ()) -> ListT TCM () -> ListT TCM ()
forall a b. (a -> b) -> a -> b
$
Bool -> ListT TCM ()
forall b (m :: * -> *). (IsBool b, MonadPlus m) => b -> m ()
guard (Bool -> ListT TCM ())
-> (Either Blocker Bool -> Bool)
-> Either Blocker Bool
-> ListT TCM ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True) (Either Blocker Bool -> ListT TCM ())
-> ListT TCM (Either Blocker Bool) -> ListT TCM ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< BlockT (ListT TCM) Bool -> ListT TCM (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (Dom Type -> BlockT (ListT TCM) Bool
forall a (m :: * -> *).
(LensRelevance a, LensSort a, PrettyTCM a, PureTCM m,
MonadBlock m) =>
a -> m Bool
isIrrelevantOrPropM Dom Type
a)
UnifyStep -> ListT TCM UnifyStep
forall a. a -> ListT TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> ListT TCM UnifyStep)
-> UnifyStep -> ListT TCM UnifyStep
forall a b. (a -> b) -> a -> b
$ Nat -> UnifyStep
SkipIrrelevantEquation Nat
k
unifyStep
:: UnifyState -> UnifyStep -> UnifyStepT TCM (UnificationResult' UnifyState)
unifyStep :: UnifyState
-> UnifyStep -> UnifyStepT TCM (UnificationResult' UnifyState)
unifyStep UnifyState
s Deletion{ deleteAt :: UnifyStep -> Nat
deleteAt = Nat
k , deleteType :: UnifyStep -> Type
deleteType = Type
a , deleteLeft :: UnifyStep -> Term
deleteLeft = Term
u , deleteRight :: UnifyStep -> Term
deleteRight = Term
v } = do
isReflexive <- Telescope
-> WriterT UnifyOutput TCM (Either Blocker Bool)
-> WriterT UnifyOutput TCM (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (WriterT UnifyOutput TCM (Either Blocker Bool)
-> WriterT UnifyOutput TCM (Either Blocker Bool))
-> WriterT UnifyOutput TCM (Either Blocker Bool)
-> WriterT UnifyOutput TCM (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Type
-> Term -> Term -> WriterT UnifyOutput TCM (Either Blocker Bool)
forall (m :: * -> *).
PureTCM m =>
Type -> Term -> Term -> m (Either Blocker Bool)
pureEqualTermB Type
a Term
u Term
v
withoutK <- withoutKOption
splitOnStrict <- asksTC envSplitOnStrict
case isReflexive of
Left Blocker
block -> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
Right Bool
False -> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
Right Bool
True | Bool
withoutK Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
splitOnStrict
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Term -> UnificationFailure
UnifyReflexiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Term
u]
Right Bool
True -> do
let (UnifyState
s', PatternSubstitution
sigma) = Nat -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Nat
k Term
u UnifyState
s
PatternSubstitution -> WriterT UnifyOutput TCM ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> WriterT UnifyOutput TCM UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Telescope -> WriterT UnifyOutput TCM Telescope)
-> UnifyState -> WriterT UnifyOutput TCM UnifyState
Lens' UnifyState Telescope
lensEqTel Telescope -> WriterT UnifyOutput TCM Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce UnifyState
s'
unifyStep UnifyState
s step :: UnifyStep
step@Solution{} = RetryNormalised
-> UnifyState
-> UnifyStep
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
RetryNormalised UnifyState
s UnifyStep
step
unifyStep UnifyState
s (Injectivity Nat
k Type
a QName
d [Arg Term]
pars [Arg Term]
ixs ConHead
c) = do
WriterT UnifyOutput TCM Bool
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> WriterT UnifyOutput TCM Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> WriterT UnifyOutput TCM Bool)
-> QName -> WriterT UnifyOutput TCM Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
c) (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
withoutK <- WriterT UnifyOutput TCM Bool
forall (m :: * -> *). HasOptions m => m Bool
withoutKOption
let (eqListTel1, _ : eqListTel2) = splitAt k $ telToList $ eqTel s
(eqTel1, eqTel2) = (telFromList eqListTel1, telFromList eqListTel2)
cdef <- getConInfo c
let ctype = Definition -> Type
defType Definition
cdef Type -> [Arg Term] -> Type
`piApply` [Arg Term]
pars
addContext (varTel s `abstract` eqTel1) $ reportSDoc "tc.lhs.unify" 40 $
"Constructor type: " <+> prettyTCM ctype
TelV ctel ctarget <- addContext (varTel s `abstract` eqTel1) $ telView ctype
let cixs = case Type -> Term
forall t a. Type'' t a -> a
unEl Type
ctarget of
Def QName
d' Elims
es | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' ->
let args :: [Arg Term]
args = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
in Nat -> [Arg Term] -> [Arg Term]
forall a. Nat -> [a] -> [a]
drop ([Arg Term] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Arg Term]
pars) [Arg Term]
args
Term
_ -> [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__
dtype <- (`piApply` pars) . defType <$> getConstInfo d
addContext (varTel s `abstract` eqTel1) $ reportSDoc "tc.lhs.unify" 40 $
"Datatype type: " <+> prettyTCM dtype
let hduTel = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
notforced = Nat -> IsForced -> [IsForced]
forall a. Nat -> a -> [a]
replicate (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
hduTel) IsForced
NotForced
res <- lift $ addContext (varTel s) $ unifyIndices' (Just __IMPOSSIBLE__)
hduTel
(allFlexVars notforced hduTel)
(raise (size ctel) dtype)
(raise (size ctel) ixs)
cixs
case res of
NoUnify NegativeUnification
_ -> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
UnifyBlocked Blocker
block -> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
UnifyStuck [UnificationFailure]
_ | Bool -> Bool
not Bool
withoutK -> do
let eqTel1' :: Telescope
eqTel1' = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
rho1 :: PatternSubstitution
rho1 = Nat -> PatternSubstitution
forall a. Nat -> Substitution' a
raiseS (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
ctel)
ceq :: Pattern' DBPatVar
ceq = ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' DBPatVar)]
-> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar)
-> [NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs Telescope
ctel
rho3 :: PatternSubstitution
rho3 = Pattern' DBPatVar -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Pattern' DBPatVar
ceq PatternSubstitution
rho1
eqTel2' :: Telescope
eqTel2' = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho3 Telescope
eqTel2
eqTel' :: Telescope
eqTel' = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
rho :: PatternSubstitution
rho = Nat -> PatternSubstitution -> PatternSubstitution
forall a. Nat -> Substitution' a -> Substitution' a
liftS (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel2) PatternSubstitution
rho3
PatternSubstitution -> WriterT UnifyOutput TCM ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
rho
eqTel' <- Telescope
-> WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope)
-> WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope
forall a b. (a -> b) -> a -> b
$ Telescope -> WriterT UnifyOutput TCM Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'
(lhs', rhs') <- addContext (varTel s) $ do
let ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg (Pattern' DBPatVar)])
-> Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
(lhsMatch, _) <- Match.matchPatterns ps $ eqLHS s
(rhsMatch, _) <- Match.matchPatterns ps $ eqRHS s
case (lhsMatch, rhsMatch) of
(Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> ([Arg Term], [Arg Term])
-> WriterT UnifyOutput TCM ([Arg Term], [Arg Term])
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return
([Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Nat -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Nat -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel') IntMap (Arg Term)
lhs',
[Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Nat -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Nat -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel') IntMap (Arg Term)
rhs')
(Match Term, Match Term)
_ -> WriterT UnifyOutput TCM ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__
return $ Unifies $ s { eqTel = eqTel' , eqLHS = lhs' , eqRHS = rhs' }
UnifyStuck [UnificationFailure]
_ -> let n :: Nat
n = UnifyState -> Nat
eqCount UnifyState
s
Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Nat -> UnifyState -> Equality
getEquality Nat
k UnifyState
s
in UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope
-> Type -> Term -> Term -> [Arg Term] -> UnificationFailure
UnifyIndicesNotVars
(UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) Type
a
(Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise Nat
n Term
u) (Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise Nat
n Term
v) (Nat -> [Arg Term] -> [Arg Term]
forall a. Subst a => Nat -> a -> a
raise (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
k) [Arg Term]
ixs)]
Unifies (Telescope
eqTel1', PatternSubstitution
rho0, [NamedArg (Pattern' DBPatVar)]
_, Either NoLeftInv (Substitution, Substitution)
_) -> do
let (PatternSubstitution
rho1, PatternSubstitution
rho2) = Nat
-> PatternSubstitution
-> (PatternSubstitution, PatternSubstitution)
forall a.
Nat -> Substitution' a -> (Substitution' a, Substitution' a)
splitS (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
ctel) PatternSubstitution
rho0
let ceq :: Pattern' DBPatVar
ceq = ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' DBPatVar)]
-> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar)
-> [NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho2 ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs Telescope
ctel
rho3 :: PatternSubstitution
rho3 = Pattern' DBPatVar -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Pattern' DBPatVar
ceq PatternSubstitution
rho1
eqTel2' :: Telescope
eqTel2' = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho3 Telescope
eqTel2
eqTel' :: Telescope
eqTel' = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
rho :: PatternSubstitution
rho = Nat -> PatternSubstitution -> PatternSubstitution
forall a. Nat -> Substitution' a -> Substitution' a
liftS (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel2) PatternSubstitution
rho3
PatternSubstitution -> WriterT UnifyOutput TCM ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
rho
eqTel' <- Telescope
-> WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope)
-> WriterT UnifyOutput TCM Telescope
-> WriterT UnifyOutput TCM Telescope
forall a b. (a -> b) -> a -> b
$ Telescope -> WriterT UnifyOutput TCM Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'
(lhs', rhs') <- addContext (varTel s) $ do
let ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg (Pattern' DBPatVar)])
-> Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
(lhsMatch, _) <- Match.matchPatterns ps $ eqLHS s
(rhsMatch, _) <- Match.matchPatterns ps $ eqRHS s
case (lhsMatch, rhsMatch) of
(Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> ([Arg Term], [Arg Term])
-> WriterT UnifyOutput TCM ([Arg Term], [Arg Term])
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return
([Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Nat -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Nat -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel') IntMap (Arg Term)
lhs',
[Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Nat -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Nat -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
eqTel') IntMap (Arg Term)
rhs')
(Match Term, Match Term)
_ -> WriterT UnifyOutput TCM ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__
return $ Unifies $ s { eqTel = eqTel' , eqLHS = lhs' , eqRHS = rhs' }
unifyStep UnifyState
s Conflict
{ conflictLeft :: UnifyStep -> Term
conflictLeft = Term
u
, conflictRight :: UnifyStep -> Term
conflictRight = Term
v
} =
case Term
u of
Con ConHead
h ConInfo
_ Elims
_ -> do
WriterT UnifyOutput TCM Bool
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> WriterT UnifyOutput TCM Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> WriterT UnifyOutput TCM Bool)
-> QName -> WriterT UnifyOutput TCM Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) Term
u Term
v
Term
_ -> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unifyStep UnifyState
s Cycle
{ cycleVar :: UnifyStep -> Nat
cycleVar = Nat
i
, cycleOccursIn :: UnifyStep -> Term
cycleOccursIn = Term
u
} =
case Term
u of
Con ConHead
h ConInfo
_ Elims
_ -> do
WriterT UnifyOutput TCM Bool
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> WriterT UnifyOutput TCM Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> WriterT UnifyOutput TCM Bool)
-> QName -> WriterT UnifyOutput TCM Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Nat -> Term -> NegativeUnification
UnifyCycle (UnifyState -> Telescope
varTel UnifyState
s) Nat
i Term
u
Term
_ -> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unifyStep UnifyState
s EtaExpandVar{ expandVar :: UnifyStep -> FlexibleVar Nat
expandVar = FlexibleVar Nat
fi, expandVarRecordType :: UnifyStep -> QName
expandVarRecordType = QName
d , expandVarParameters :: UnifyStep -> [Arg Term]
expandVarParameters = [Arg Term]
pars } = do
recd <- RecordData -> Maybe RecordData -> RecordData
forall a. a -> Maybe a -> a
fromMaybe RecordData
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe RecordData -> RecordData)
-> WriterT UnifyOutput TCM (Maybe RecordData)
-> WriterT UnifyOutput TCM RecordData
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> WriterT UnifyOutput TCM (Maybe RecordData)
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe RecordData)
isRecord QName
d
let delta = RecordData -> Telescope
_recTel RecordData
recd Telescope -> [Arg Term] -> Telescope
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term]
pars
c = RecordData -> ConHead
_recConHead RecordData
recd
let nfields = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
delta
(varTel', rho) = expandTelescopeVar (varTel s) (m-1-i) delta c
projectFlexible = [ ArgInfo
-> IsForced
-> FlexibleVarKind
-> Maybe Nat
-> Nat
-> FlexibleVar Nat
forall a.
ArgInfo
-> IsForced -> FlexibleVarKind -> Maybe Nat -> a -> FlexibleVar a
FlexibleVar (FlexibleVar Nat -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo FlexibleVar Nat
fi) (FlexibleVar Nat -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Nat
fi) (Nat -> FlexibleVarKind
projFlexKind Nat
j) (FlexibleVar Nat -> Maybe Nat
forall a. FlexibleVar a -> Maybe Nat
flexPos FlexibleVar Nat
fi) (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
j) | Nat
j <- [Nat
0 .. Nat
nfields Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1] ]
tellUnifySubst $ rho
return $ Unifies $ UState
{ varTel = varTel'
, flexVars = projectFlexible ++ liftFlexibles nfields (flexVars s)
, eqTel = applyPatSubst rho $ eqTel s
, eqLHS = applyPatSubst rho $ eqLHS s
, eqRHS = applyPatSubst rho $ eqRHS s
}
where
i :: Nat
i = FlexibleVar Nat -> Nat
forall a. FlexibleVar a -> a
flexVar FlexibleVar Nat
fi
m :: Nat
m = UnifyState -> Nat
varCount UnifyState
s
projFlexKind :: Int -> FlexibleVarKind
projFlexKind :: Nat -> FlexibleVarKind
projFlexKind Nat
j = case FlexibleVar Nat -> FlexibleVarKind
forall a. FlexibleVar a -> FlexibleVarKind
flexKind FlexibleVar Nat
fi of
RecordFlex [FlexibleVarKind]
ks -> FlexibleVarKind -> [FlexibleVarKind] -> Nat -> FlexibleVarKind
forall a. a -> [a] -> Nat -> a
indexWithDefault FlexibleVarKind
ImplicitFlex [FlexibleVarKind]
ks Nat
j
FlexibleVarKind
ImplicitFlex -> FlexibleVarKind
ImplicitFlex
FlexibleVarKind
DotFlex -> FlexibleVarKind
DotFlex
FlexibleVarKind
OtherFlex -> FlexibleVarKind
OtherFlex
liftFlexible :: Int -> Int -> Maybe Int
liftFlexible :: Nat -> Nat -> Maybe Nat
liftFlexible Nat
n Nat
j = if Nat
j Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
i then Maybe Nat
forall a. Maybe a
Nothing else Nat -> Maybe Nat
forall a. a -> Maybe a
Just (if Nat
j Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
> Nat
i then Nat
j Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1) else Nat
j)
liftFlexibles :: Int -> FlexibleVars -> FlexibleVars
liftFlexibles :: Nat -> FlexibleVars -> FlexibleVars
liftFlexibles Nat
n FlexibleVars
fs = (FlexibleVar Nat -> Maybe (FlexibleVar Nat))
-> FlexibleVars -> FlexibleVars
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ((Nat -> Maybe Nat) -> FlexibleVar Nat -> Maybe (FlexibleVar Nat)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> FlexibleVar a -> f (FlexibleVar b)
traverse ((Nat -> Maybe Nat) -> FlexibleVar Nat -> Maybe (FlexibleVar Nat))
-> (Nat -> Maybe Nat) -> FlexibleVar Nat -> Maybe (FlexibleVar Nat)
forall a b. (a -> b) -> a -> b
$ Nat -> Nat -> Maybe Nat
liftFlexible Nat
n) FlexibleVars
fs
unifyStep UnifyState
s EtaExpandEquation{ expandAt :: UnifyStep -> Nat
expandAt = Nat
k, expandRecordType :: UnifyStep -> QName
expandRecordType = QName
d, expandParameters :: UnifyStep -> [Arg Term]
expandParameters = [Arg Term]
pars } = do
recd <- RecordData -> Maybe RecordData -> RecordData
forall a. a -> Maybe a -> a
fromMaybe RecordData
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe RecordData -> RecordData)
-> WriterT UnifyOutput TCM (Maybe RecordData)
-> WriterT UnifyOutput TCM RecordData
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> WriterT UnifyOutput TCM (Maybe RecordData)
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe RecordData)
isRecord QName
d
let delta = RecordData -> Telescope
_recTel RecordData
recd Telescope -> [Arg Term] -> Telescope
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term]
pars
c = RecordData -> ConHead
_recConHead RecordData
recd
lhs <- expandKth $ eqLHS s
rhs <- expandKth $ eqRHS s
let (tel, sigma) = expandTelescopeVar (eqTel s) k delta c
tellUnifyProof sigma
Unifies <$> do
lensEqTel reduce $ s
{ eqTel = tel
, eqLHS = lhs
, eqRHS = rhs
}
where
expandKth :: [Arg Term] -> WriterT UnifyOutput TCM [Arg Term]
expandKth [Arg Term]
us = do
let ([Arg Term]
us1,Arg Term
v:[Arg Term]
us2) = ([Arg Term], [Arg Term])
-> Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term])
forall a. a -> Maybe a -> a
fromMaybe ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term]))
-> Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term])
forall a b. (a -> b) -> a -> b
$ Nat -> [Arg Term] -> Maybe ([Arg Term], [Arg Term])
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt Nat
k [Arg Term]
us
vs <- (Telescope, [Arg Term]) -> [Arg Term]
forall a b. (a, b) -> b
snd ((Telescope, [Arg Term]) -> [Arg Term])
-> WriterT UnifyOutput TCM (Telescope, [Arg Term])
-> WriterT UnifyOutput TCM [Arg Term]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName
-> [Arg Term]
-> Term
-> WriterT UnifyOutput TCM (Telescope, [Arg Term])
forall (m :: * -> *).
(HasConstInfo m, MonadDebug m, ReadTCState m) =>
QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
etaExpandRecord QName
d [Arg Term]
pars (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
v)
vs <- reduce vs
return $ us1 ++ vs ++ us2
unifyStep UnifyState
s LitConflict
{ litType :: UnifyStep -> Type
litType = Type
a
, litConflictLeft :: UnifyStep -> Literal
litConflictLeft = Literal
l
, litConflictRight :: UnifyStep -> Literal
litConflictRight = Literal
l'
} = UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) (Literal -> Term
Lit Literal
l) (Literal -> Term
Lit Literal
l')
unifyStep UnifyState
s (StripSizeSuc Nat
k Term
u Term
v) = do
sizeTy <- WriterT UnifyOutput TCM Type
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
m Type
sizeType
sizeSu <- sizeSuc 1 (var 0)
let n = UnifyState -> Nat
eqCount UnifyState
s
sub = Nat -> Substitution -> Substitution
forall a. Nat -> Substitution' a -> Substitution' a
liftS (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
kNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1) (Substitution -> Substitution) -> Substitution -> Substitution
forall a b. (a -> b) -> a -> b
$ Term -> Substitution -> Substitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
sizeSu (Substitution -> Substitution) -> Substitution -> Substitution
forall a b. (a -> b) -> a -> b
$ Nat -> Substitution
forall a. Nat -> Substitution' a
raiseS Nat
1
eqFlatTel = Telescope -> [Dom Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (Telescope -> [Dom Type]) -> Telescope -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
eqFlatTel' = Substitution' (SubstArg [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg [Dom Type])
sub ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ Nat -> (Dom Type -> Dom Type) -> [Dom Type] -> [Dom Type]
forall a. Nat -> (a -> a) -> [a] -> [a]
updateAt Nat
k ((Type -> Type) -> Dom Type -> Dom Type
forall a b. (a -> b) -> Dom' Term a -> Dom' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Type -> Type) -> Dom Type -> Dom Type)
-> (Type -> Type) -> Dom Type -> Dom Type
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
forall a b. a -> b -> a
const Type
sizeTy) ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ [Dom Type]
eqFlatTel
eqTel' = [String] -> [Dom Type] -> Telescope
unflattenTel (Telescope -> [String]
teleNames (Telescope -> [String]) -> Telescope -> [String]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s) [Dom Type]
eqFlatTel'
return $ Unifies $ s
{ eqTel = eqTel'
, eqLHS = updateAt k (const $ defaultArg u) $ eqLHS s
, eqRHS = updateAt k (const $ defaultArg v) $ eqRHS s
}
unifyStep UnifyState
s (SkipIrrelevantEquation Nat
k) = do
let lhs :: [Arg Term]
lhs = UnifyState -> [Arg Term]
eqLHS UnifyState
s
(UnifyState
s', PatternSubstitution
sigma) = Nat -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Nat
k (Term -> Term
DontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Nat -> Arg Term
forall a. a -> [a] -> Nat -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
lhs Nat
k) UnifyState
s
PatternSubstitution -> WriterT UnifyOutput TCM ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyOutput TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyStepT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s'
unifyStep UnifyState
s (TypeConInjectivity Nat
k QName
d [Arg Term]
us [Arg Term]
vs) = do
dtype <- Definition -> Type
defType (Definition -> Type)
-> WriterT UnifyOutput TCM Definition
-> WriterT UnifyOutput TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> WriterT UnifyOutput TCM Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
TelV dtel _ <- telView dtype
let deq = QName -> Elims -> Term
Def QName
d (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> [Arg Term] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply ([Arg Term] -> Elims) -> [Arg Term] -> Elims
forall a b. (a -> b) -> a -> b
$ Telescope -> [Arg Term]
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Telescope
dtel
Unifies <$> do
lensEqTel reduce $ s
{ eqTel = dtel `abstract` applyUnder k (eqTel s) (raise k deq)
, eqLHS = us ++ dropAt k (eqLHS s)
, eqRHS = vs ++ dropAt k (eqRHS s)
}
data RetryNormalised = RetryNormalised | DontRetryNormalised
deriving (RetryNormalised -> RetryNormalised -> Bool
(RetryNormalised -> RetryNormalised -> Bool)
-> (RetryNormalised -> RetryNormalised -> Bool)
-> Eq RetryNormalised
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: RetryNormalised -> RetryNormalised -> Bool
== :: RetryNormalised -> RetryNormalised -> Bool
$c/= :: RetryNormalised -> RetryNormalised -> Bool
/= :: RetryNormalised -> RetryNormalised -> Bool
Eq, Nat -> RetryNormalised -> ShowS
[RetryNormalised] -> ShowS
RetryNormalised -> String
(Nat -> RetryNormalised -> ShowS)
-> (RetryNormalised -> String)
-> ([RetryNormalised] -> ShowS)
-> Show RetryNormalised
forall a.
(Nat -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Nat -> RetryNormalised -> ShowS
showsPrec :: Nat -> RetryNormalised -> ShowS
$cshow :: RetryNormalised -> String
show :: RetryNormalised -> String
$cshowList :: [RetryNormalised] -> ShowS
showList :: [RetryNormalised] -> ShowS
Show)
solutionStep
:: (PureTCM m, MonadWriter UnifyOutput m)
=> RetryNormalised
-> UnifyState
-> UnifyStep
-> m (UnificationResult' UnifyState)
solutionStep :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
retry UnifyState
s
step :: UnifyStep
step@Solution{ solutionAt :: UnifyStep -> Nat
solutionAt = Nat
k
, solutionType :: UnifyStep -> Dom Type
solutionType = dom :: Dom Type
dom@Dom{ unDom :: forall t e. Dom' t e -> e
unDom = Type
a }
, solutionVar :: UnifyStep -> FlexibleVar Nat
solutionVar = fi :: FlexibleVar Nat
fi@FlexibleVar{ flexVar :: forall a. FlexibleVar a -> a
flexVar = Nat
i }
, solutionTerm :: UnifyStep -> Term
solutionTerm = Term
u } = do
let m :: Nat
m = UnifyState -> Nat
varCount UnifyState
s
inMakeCase <- Lens' TCEnv Bool -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (Bool -> f Bool) -> TCEnv -> f TCEnv
Lens' TCEnv Bool
eMakeCase
let forcedVars | Bool
inMakeCase = IntMap Modality
forall a. IntMap a
IntMap.empty
| Bool
otherwise = [(Nat, Modality)] -> IntMap Modality
forall a. [(Nat, a)] -> IntMap a
IntMap.fromList [ (FlexibleVar Nat -> Nat
forall a. FlexibleVar a -> a
flexVar FlexibleVar Nat
fi, FlexibleVar Nat -> Modality
forall a. LensModality a => a -> Modality
getModality FlexibleVar Nat
fi) | FlexibleVar Nat
fi <- UnifyState -> FlexibleVars
flexVars UnifyState
s,
FlexibleVar Nat -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Nat
fi IsForced -> IsForced -> Bool
forall a. Eq a => a -> a -> Bool
== IsForced
Forced ]
(p, bound) <- patternBindingForcedVars forcedVars u
let dotSub = (PatternSubstitution -> PatternSubstitution -> PatternSubstitution)
-> PatternSubstitution
-> [PatternSubstitution]
-> PatternSubstitution
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
composeS PatternSubstitution
forall a. Substitution' a
idS [ Nat -> Pattern' DBPatVar -> PatternSubstitution
forall a. EndoSubst a => Nat -> a -> Substitution' a
inplaceS Nat
i (Term -> Pattern' DBPatVar
forall a. Term -> Pattern' a
dotP (Nat -> Elims -> Term
Var Nat
i [])) | Nat
i <- IntMap Modality -> [Nat]
forall a. IntMap a -> [Nat]
IntMap.keys IntMap Modality
bound ]
let updModality Modality
md IntMap Modality
vars Telescope
tel
| IntMap Modality -> Bool
forall a. IntMap a -> Bool
IntMap.null IntMap Modality
vars = Telescope
tel
| Bool
otherwise = ListTel -> Telescope
telFromList (ListTel -> Telescope) -> ListTel -> Telescope
forall a b. (a -> b) -> a -> b
$ (Nat -> Dom (String, Type) -> Dom (String, Type))
-> [Nat] -> ListTel -> ListTel
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Nat -> Dom (String, Type) -> Dom (String, Type)
upd (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom (Nat -> [Nat]) -> Nat -> [Nat]
forall a b. (a -> b) -> a -> b
$ Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel) (Telescope -> ListTel
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel)
where
upd :: Nat -> Dom (String, Type) -> Dom (String, Type)
upd Nat
i Dom (String, Type)
a | Just Modality
md' <- Nat -> IntMap Modality -> Maybe Modality
forall a. Nat -> IntMap a -> Maybe a
IntMap.lookup Nat
i IntMap Modality
vars = Modality -> Dom (String, Type) -> Dom (String, Type)
forall a. LensModality a => Modality -> a -> a
setModality (Modality -> Modality -> Modality
composeModality Modality
md Modality
md') Dom (String, Type)
a
| Bool
otherwise = Dom (String, Type)
a
s <- return $ s { varTel = updModality (getModality fi) bound (varTel s) }
reportSDoc "tc.lhs.unify.force" 45 $ vcat
[ "forcedVars =" <+> pretty (IntMap.keys forcedVars)
, "u =" <+> prettyTCM u
, "p =" <+> prettyTCM p
, "bound =" <+> pretty (IntMap.keys bound)
, "dotSub =" <+> pretty dotSub ]
let dom'@Dom{ unDom = a' } = getVarType (m-1-i) s
equalTypes <- addContext (varTel s) $ do
reportSDoc "tc.lhs.unify" 45 $ "Equation type: " <+> prettyTCM a
reportSDoc "tc.lhs.unify" 45 $ "Variable type: " <+> prettyTCM a'
pureEqualTypeB a a'
envmod <- currentModality
let eqrel = Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
dom
eqmod = Dom Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom Type
dom
varmod = Dom Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom Type
dom'
mod = Bool -> (Modality -> Modality) -> Modality -> Modality
forall b a. IsBool b => b -> (a -> a) -> a -> a
applyUnless (Relevance
shapeIrrelevant Relevance -> Relevance -> Bool
`moreRelevant` Relevance
eqrel) (Relevance -> Modality -> Modality
forall a. LensRelevance a => Relevance -> a -> a
setRelevance Relevance
eqrel)
(Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Bool -> (Modality -> Modality) -> Modality -> Modality
forall b a. IsBool b => b -> (a -> a) -> a -> a
applyUnless (Modality -> Bool
forall a. LensQuantity a => a -> Bool
usableQuantity Modality
envmod) (Quantity -> Modality -> Modality
forall a. LensQuantity a => Quantity -> a -> a
setQuantity Quantity
zeroQuantity)
(Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Modality
varmod
reportSDoc "tc.lhs.unify" 65 $ text $ "Equation modality: " ++ show (getModality dom)
reportSDoc "tc.lhs.unify" 65 $ text $ "Variable modality: " ++ show varmod
reportSDoc "tc.lhs.unify" 65 $ text $ "Solution must be usable in a " ++ show mod ++ " position."
eusable <- addContext (varTel s) $ runExceptT $ usableMod mod u
caseEitherM (return eusable) (return . UnifyBlocked) $ \ Bool
usable -> do
String -> Nat -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
45 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Modality ok: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Bool -> m Doc
prettyTCM Bool
usable
Bool -> m () -> m ()
forall b (m :: * -> *). (IsBool b, Monad m) => b -> m () -> m ()
unless Bool
usable (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Nat -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
65 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Rejected solution: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
u
if Bool -> Bool
not (Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
eqmod Cohesion -> Cohesion -> Bool
`moreCohesion` Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
varmod) then UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [] else do
case Either Blocker Bool
equalTypes of
Left Blocker
block -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
Right Bool
False -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
Right Bool
True | Bool
usable ->
case Nat
-> Pattern' DBPatVar
-> UnifyState
-> Maybe (UnifyState, PatternSubstitution)
solveVar (Nat
m Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1 Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
i) Pattern' DBPatVar
p UnifyState
s of
Maybe (UnifyState, PatternSubstitution)
Nothing | RetryNormalised
retry RetryNormalised -> RetryNormalised -> Bool
forall a. Eq a => a -> a -> Bool
== RetryNormalised
RetryNormalised -> do
u <- Term -> m Term
forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise Term
u
s <- lensVarTel normalise s
solutionStep DontRetryNormalised s step{ solutionTerm = u }
Maybe (UnifyState, PatternSubstitution)
Nothing ->
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Nat -> Term -> UnificationFailure
UnifyRecursiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Nat
i Term
u]
Just (UnifyState
s', PatternSubstitution
sub) -> do
let rho :: PatternSubstitution
rho = PatternSubstitution
sub PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` PatternSubstitution
dotSub
PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifySubst PatternSubstitution
rho
let (UnifyState
s'', PatternSubstitution
sigma) = Nat -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Nat
k (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho Term
u) UnifyState
s'
PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s''
Right Bool
True -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Nat -> Term -> Modality -> UnificationFailure
UnifyUnusableModality (UnifyState -> Telescope
varTel UnifyState
s) Type
a Nat
i Term
u Modality
mod]
solutionStep RetryNormalised
_ UnifyState
_ UnifyStep
_ = m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unify :: UnifyState -> UnifyStrategy -> UnifyLogT TCM (UnificationResult' UnifyState)
unify :: UnifyState
-> UnifyStrategy -> UnifyLogT TCM (UnificationResult' UnifyState)
unify UnifyState
s UnifyStrategy
strategy = if UnifyState -> Bool
isUnifyStateSolved UnifyState
s
then UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s
else ListT TCM UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStepsAndContinue (UnifyStrategy
strategy UnifyState
s)
where
tryUnifyStepsAndContinue
:: ListT TCM UnifyStep -> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStepsAndContinue :: ListT TCM UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStepsAndContinue ListT TCM UnifyStep
steps = do
x <- (UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnifyLogT TCM (UnificationResult' UnifyState)
-> ListT (WriterT UnifyLog' TCM) UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b -> m b) -> m b -> ListT m a -> m b
foldListT UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
-> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStep UnifyLogT TCM (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m (UnificationResult' a)
failure ((forall a1. TCM a1 -> WriterT UnifyLog' TCM a1)
-> ListT TCM UnifyStep -> ListT (WriterT UnifyLog' TCM) UnifyStep
forall (m :: * -> *) (m' :: * -> *) a.
(Monad m, Monad m') =>
(forall a1. m a1 -> m' a1) -> ListT m a -> ListT m' a
liftListT TCM a1 -> WriterT UnifyLog' TCM a1
forall a1. TCM a1 -> WriterT UnifyLog' TCM a1
forall (m :: * -> *) a. Monad m => m a -> WriterT UnifyLog' m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift ListT TCM UnifyStep
steps)
case x of
Unifies UnifyState
s' -> UnifyState
-> UnifyStrategy -> UnifyLogT TCM (UnificationResult' UnifyState)
unify UnifyState
s' UnifyStrategy
strategy
NoUnify NegativeUnification
err -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify NegativeUnification
err
UnifyBlocked Blocker
b -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b
UnifyStuck [UnificationFailure]
err -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [UnificationFailure]
err
tryUnifyStep :: UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
-> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStep :: UnifyStep
-> UnifyLogT TCM (UnificationResult' UnifyState)
-> UnifyLogT TCM (UnificationResult' UnifyState)
tryUnifyStep UnifyStep
step UnifyLogT TCM (UnificationResult' UnifyState)
fallback = do
Telescope -> WriterT UnifyLog' TCM () -> WriterT UnifyLog' TCM ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Telescope -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (WriterT UnifyLog' TCM () -> WriterT UnifyLog' TCM ())
-> WriterT UnifyLog' TCM () -> WriterT UnifyLog' TCM ()
forall a b. (a -> b) -> a -> b
$
String -> Nat -> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
20 (TCMT IO Doc -> WriterT UnifyLog' TCM ())
-> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"trying unifyStep" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyStep -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => UnifyStep -> m Doc
prettyTCM UnifyStep
step
(x, output) <- TCM (UnificationResult' UnifyState, UnifyOutput)
-> WriterT
UnifyLog' TCM (UnificationResult' UnifyState, UnifyOutput)
forall (m :: * -> *) a. Monad m => m a -> WriterT UnifyLog' m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (TCM (UnificationResult' UnifyState, UnifyOutput)
-> WriterT
UnifyLog' TCM (UnificationResult' UnifyState, UnifyOutput))
-> TCM (UnificationResult' UnifyState, UnifyOutput)
-> WriterT
UnifyLog' TCM (UnificationResult' UnifyState, UnifyOutput)
forall a b. (a -> b) -> a -> b
$ UnifyStepT TCM (UnificationResult' UnifyState)
-> TCM (UnificationResult' UnifyState, UnifyOutput)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT (UnifyStepT TCM (UnificationResult' UnifyState)
-> TCM (UnificationResult' UnifyState, UnifyOutput))
-> UnifyStepT TCM (UnificationResult' UnifyState)
-> TCM (UnificationResult' UnifyState, UnifyOutput)
forall a b. (a -> b) -> a -> b
$ UnifyState
-> UnifyStep -> UnifyStepT TCM (UnificationResult' UnifyState)
unifyStep UnifyState
s UnifyStep
step
case x of
Unifies UnifyState
s' -> do
String -> Nat -> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
20 (TCMT IO Doc -> WriterT UnifyLog' TCM ())
-> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"unifyStep successful."
String -> Nat -> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Nat
20 (TCMT IO Doc -> WriterT UnifyLog' TCM ())
-> TCMT IO Doc -> WriterT UnifyLog' TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"new unifyState:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyState -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => UnifyState -> m Doc
prettyTCM UnifyState
s'
(UnifyLogEntry, UnifyState) -> WriterT UnifyLog' TCM ()
forall (m :: * -> *).
MonadWriter UnifyLog' m =>
(UnifyLogEntry, UnifyState) -> m ()
writeUnifyLog ((UnifyLogEntry, UnifyState) -> WriterT UnifyLog' TCM ())
-> (UnifyLogEntry, UnifyState) -> WriterT UnifyLog' TCM ()
forall a b. (a -> b) -> a -> b
$ (UnifyState -> UnifyStep -> UnifyOutput -> UnifyLogEntry
UnificationStep UnifyState
s UnifyStep
step UnifyOutput
output,UnifyState
s')
UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
NoUnify{} -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
UnifyBlocked Blocker
b1 -> do
y <- UnifyLogT TCM (UnificationResult' UnifyState)
fallback
case y of
UnifyStuck [UnificationFailure]
_ -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b1
UnifyBlocked Blocker
b2 -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked (Blocker -> UnificationResult' UnifyState)
-> Blocker -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Blocker -> Blocker -> Blocker
unblockOnEither Blocker
b1 Blocker
b2
UnificationResult' UnifyState
_ -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y
UnifyStuck [UnificationFailure]
err1 -> do
y <- UnifyLogT TCM (UnificationResult' UnifyState)
fallback
case y of
UnifyStuck [UnificationFailure]
err2 -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck ([UnificationFailure] -> UnificationResult' UnifyState)
-> [UnificationFailure] -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ [UnificationFailure]
err1 [UnificationFailure]
-> [UnificationFailure] -> [UnificationFailure]
forall a. [a] -> [a] -> [a]
++ [UnificationFailure]
err2
UnificationResult' UnifyState
_ -> UnificationResult' UnifyState
-> UnifyLogT TCM (UnificationResult' UnifyState)
forall a. a -> WriterT UnifyLog' TCM a
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y
failure :: Monad m => m (UnificationResult' a)
failure :: forall (m :: * -> *) a. Monad m => m (UnificationResult' a)
failure = UnificationResult' a -> m (UnificationResult' a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' a -> m (UnificationResult' a))
-> UnificationResult' a -> m (UnificationResult' a)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' a
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
patternBindingForcedVars :: PureTCM m => IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
patternBindingForcedVars :: forall (m :: * -> *).
PureTCM m =>
IntMap Modality -> Term -> m (Pattern' DBPatVar, IntMap Modality)
patternBindingForcedVars IntMap Modality
forced Term
v = do
let v' :: Term
v' = Term -> Term
forall a. PrecomputeFreeVars a => a -> a
precomputeFreeVars_ Term
v
WriterT (IntMap Modality) m (Pattern' DBPatVar)
-> m (Pattern' DBPatVar, IntMap Modality)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT (StateT
(IntMap Modality) (WriterT (IntMap Modality) m) (Pattern' DBPatVar)
-> IntMap Modality
-> WriterT (IntMap Modality) m (Pattern' DBPatVar)
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT (Modality
-> Term
-> StateT
(IntMap Modality) (WriterT (IntMap Modality) m) (Pattern' DBPatVar)
forall {t :: (* -> *) -> * -> *} {t :: (* -> *) -> * -> *}
{m :: * -> *} {a}.
(HasConstInfo (t (t m)), DeBruijn a,
MonadWriter (IntMap Modality) (t (t m)),
MonadState (IntMap Modality) (t (t m)), MonadTrans t, MonadTrans t,
Monad (t m), MonadReduce m) =>
Modality -> Term -> t (t m) (Pattern' a)
go Modality
unitModality Term
v') IntMap Modality
forced)
where
noForced :: a -> m Bool
noForced a
v = (IntMap a -> Bool) -> m Bool
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets ((IntMap a -> Bool) -> m Bool) -> (IntMap a -> Bool) -> m Bool
forall a b. (a -> b) -> a -> b
$ IntSet -> IntSet -> Bool
IntSet.disjoint (a -> IntSet
forall a. PrecomputeFreeVars a => a -> IntSet
precomputedFreeVars a
v) (IntSet -> Bool) -> (IntMap a -> IntSet) -> IntMap a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> IntSet
forall a. IntMap a -> IntSet
IntMap.keysSet
bind :: a -> Nat -> m (Pattern' a)
bind a
md Nat
i = do
(IntMap a -> Maybe a) -> m (Maybe a)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets (Nat -> IntMap a -> Maybe a
forall a. Nat -> IntMap a -> Maybe a
IntMap.lookup Nat
i) m (Maybe a) -> (Maybe a -> m (Pattern' a)) -> m (Pattern' a)
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just a
md' | a -> PartialOrdering -> a -> Bool
forall a. PartialOrd a => a -> PartialOrdering -> a -> Bool
related a
md PartialOrdering
POLE a
md' -> do
IntMap a -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (IntMap a -> m ()) -> IntMap a -> m ()
forall a b. (a -> b) -> a -> b
$ Nat -> a -> IntMap a
forall a. Nat -> a -> IntMap a
IntMap.singleton Nat
i a
md
(IntMap a -> IntMap a) -> m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((IntMap a -> IntMap a) -> m ()) -> (IntMap a -> IntMap a) -> m ()
forall a b. (a -> b) -> a -> b
$ Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
IntMap.delete Nat
i
Pattern' a -> m (Pattern' a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ a -> Pattern' a
forall a. a -> Pattern' a
varP (Nat -> a
forall a. DeBruijn a => Nat -> a
deBruijnVar Nat
i)
Maybe a
_ -> Pattern' a -> m (Pattern' a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP (Nat -> Elims -> Term
Var Nat
i [])
go :: Modality -> Term -> t (t m) (Pattern' a)
go Modality
md Term
v = t (t m) Bool
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Term -> t (t m) Bool
forall {a} {m :: * -> *} {a}.
(MonadState (IntMap a) m, PrecomputeFreeVars a) =>
a -> m Bool
noForced Term
v) (Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v) (t (t m) (Pattern' a) -> t (t m) (Pattern' a))
-> t (t m) (Pattern' a) -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ do
v' <- t m Term -> t (t m) Term
forall (m :: * -> *) a. Monad m => m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (t m Term -> t (t m) Term) -> t m Term -> t (t m) Term
forall a b. (a -> b) -> a -> b
$ m Term -> t m Term
forall (m :: * -> *) a. Monad m => m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m Term -> t m Term) -> m Term -> t m Term
forall a b. (a -> b) -> a -> b
$ Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
v
case v' of
Var Nat
i [] -> Modality -> Nat -> t (t m) (Pattern' a)
forall {m :: * -> *} {a} {a}.
(MonadState (IntMap a) m, PartialOrd a, MonadWriter (IntMap a) m,
DeBruijn a) =>
a -> Nat -> m (Pattern' a)
bind Modality
md Nat
i
Con ConHead
c ConInfo
ci Elims
es
| Just [Arg Term]
vs <- Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es -> do
fs <- Definition -> [IsForced]
defForced (Definition -> [IsForced])
-> t (t m) Definition -> t (t m) [IsForced]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> t (t m) Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo (ConHead -> QName
conName ConHead
c)
let goArg IsForced
Forced Arg Term
v = NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a))
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a)))
-> NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a))
forall a b. (a -> b) -> a -> b
$ (Term -> Named NamedName (Pattern' a))
-> Arg Term -> NamedArg (Pattern' a)
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Pattern' a -> Named NamedName (Pattern' a))
-> (Term -> Pattern' a) -> Term -> Named NamedName (Pattern' a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Pattern' a
forall a. Term -> Pattern' a
dotP) Arg Term
v
goArg IsForced
NotForced Arg Term
v = (Pattern' a -> Named NamedName (Pattern' a))
-> Arg (Pattern' a) -> NamedArg (Pattern' a)
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Arg (Pattern' a) -> NamedArg (Pattern' a))
-> t (t m) (Arg (Pattern' a)) -> t (t m) (NamedArg (Pattern' a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> t (t m) (Pattern' a))
-> Arg Term -> t (t m) (Arg (Pattern' a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse (Modality -> Term -> t (t m) (Pattern' a)
go (Modality -> Term -> t (t m) (Pattern' a))
-> Modality -> Term -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Modality -> Modality -> Modality
composeModality Modality
md (Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Arg Term -> Modality
forall a. LensModality a => a -> Modality
getModality Arg Term
v) Arg Term
v
(ps, bound) <- listen $ zipWithM goArg (fs ++ repeat NotForced) vs
if IntMap.null bound
then return $ dotP v
else do
let cpi = (ConInfo -> ConPatternInfo
toConPatternInfo ConInfo
ci) { conPLazy = True }
return $ ConP c cpi $ map (setOrigin Inserted) ps
| Bool
otherwise -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Var Nat
_ (Elim
_:Elims
_) -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Lam{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Pi{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Def{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
MetaV{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Sort{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Level{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
DontCare{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Dummy{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
Lit{} -> Pattern' a -> t (t m) (Pattern' a)
forall a. a -> t (t m) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v