{-# OPTIONS_GHC -Wunused-imports #-}
module Agda.TypeChecking.Free.Reduce
( ForceNotFree
, forceNotFree
, reallyFree
, IsFree(..)
) where
import Prelude hiding (null)
import Control.Monad.Reader
import Control.Monad.State
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.IntSet as IntSet
import Data.IntSet (IntSet)
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Free
import Agda.TypeChecking.Free.Precompute
import Agda.Utils.Monad
import Agda.Utils.Null
data IsFree
= MaybeFree MetaSet
| NotFree
deriving (IsFree -> IsFree -> Bool
(IsFree -> IsFree -> Bool)
-> (IsFree -> IsFree -> Bool) -> Eq IsFree
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: IsFree -> IsFree -> Bool
== :: IsFree -> IsFree -> Bool
$c/= :: IsFree -> IsFree -> Bool
/= :: IsFree -> IsFree -> Bool
Eq, Int -> IsFree -> ShowS
[IsFree] -> ShowS
IsFree -> String
(Int -> IsFree -> ShowS)
-> (IsFree -> String) -> ([IsFree] -> ShowS) -> Show IsFree
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> IsFree -> ShowS
showsPrec :: Int -> IsFree -> ShowS
$cshow :: IsFree -> String
show :: IsFree -> String
$cshowList :: [IsFree] -> ShowS
showList :: [IsFree] -> ShowS
Show)
forceNotFree :: (ForceNotFree a, Reduce a, MonadReduce m)
=> IntSet -> a -> m (IntMap IsFree, a)
forceNotFree :: forall a (m :: * -> *).
(ForceNotFree a, Reduce a, MonadReduce m) =>
IntSet -> a -> m (IntMap IsFree, a)
forceNotFree IntSet
xs a
a = do
let mxs :: IntMap IsFree
mxs = (Int -> IsFree) -> IntSet -> IntMap IsFree
forall a. (Int -> a) -> IntSet -> IntMap a
IntMap.fromSet (IsFree -> Int -> IsFree
forall a b. a -> b -> a
const IsFree
NotFree) IntSet
xs
(a, mxs) <- StateT (IntMap IsFree) m a -> IntMap IsFree -> m (a, IntMap IsFree)
forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
runStateT (ReaderT MetaSet (StateT (IntMap IsFree) m) a
-> MetaSet -> StateT (IntMap IsFree) m a
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (a -> ReaderT MetaSet (StateT (IntMap IsFree) m) a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR (a -> ReaderT MetaSet (StateT (IntMap IsFree) m) a)
-> a -> ReaderT MetaSet (StateT (IntMap IsFree) m) a
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. PrecomputeFreeVars a => a -> a
precomputeFreeVars_ a
a) MetaSet
forall a. Monoid a => a
mempty) IntMap IsFree
mxs
return (mxs, a)
reallyFree :: (MonadReduce m, Reduce a, ForceNotFree a)
=> IntSet -> a -> m (Either Blocked_ (Maybe a))
reallyFree :: forall (m :: * -> *) a.
(MonadReduce m, Reduce a, ForceNotFree a) =>
IntSet -> a -> m (Either Blocked_ (Maybe a))
reallyFree IntSet
xs a
v = do
(mxs , v') <- IntSet -> a -> m (IntMap IsFree, a)
forall a (m :: * -> *).
(ForceNotFree a, Reduce a, MonadReduce m) =>
IntSet -> a -> m (IntMap IsFree, a)
forceNotFree IntSet
xs a
v
case IntMap.foldr pickFree NotFree mxs of
MaybeFree MetaSet
ms
| MetaSet -> Bool
forall a. Null a => a -> Bool
null MetaSet
ms -> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a)))
-> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a b. (a -> b) -> a -> b
$ Maybe a -> Either Blocked_ (Maybe a)
forall a b. b -> Either a b
Right Maybe a
forall a. Maybe a
Nothing
| Bool
otherwise -> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a)))
-> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a b. (a -> b) -> a -> b
$ Blocked_ -> Either Blocked_ (Maybe a)
forall a b. a -> Either a b
Left (Blocked_ -> Either Blocked_ (Maybe a))
-> Blocked_ -> Either Blocked_ (Maybe a)
forall a b. (a -> b) -> a -> b
$ Blocker -> () -> Blocked_
forall t a. Blocker -> a -> Blocked' t a
Blocked Blocker
blocker ()
where blocker :: Blocker
blocker = MetaSet -> Blocker
metaSetToBlocker MetaSet
ms
IsFree
NotFree -> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a)))
-> Either Blocked_ (Maybe a) -> m (Either Blocked_ (Maybe a))
forall a b. (a -> b) -> a -> b
$ Maybe a -> Either Blocked_ (Maybe a)
forall a b. b -> Either a b
Right (a -> Maybe a
forall a. a -> Maybe a
Just a
v')
where
pickFree :: IsFree -> IsFree -> IsFree
pickFree :: IsFree -> IsFree -> IsFree
pickFree f1 :: IsFree
f1@(MaybeFree MetaSet
ms1) IsFree
f2
| MetaSet -> Bool
forall a. Null a => a -> Bool
null MetaSet
ms1 = IsFree
f1
pickFree f1 :: IsFree
f1@(MaybeFree MetaSet
ms1) f2 :: IsFree
f2@(MaybeFree MetaSet
ms2)
| MetaSet -> Bool
forall a. Null a => a -> Bool
null MetaSet
ms2 = IsFree
f2
| Bool
otherwise = IsFree
f1
pickFree f1 :: IsFree
f1@(MaybeFree MetaSet
ms1) IsFree
NotFree = IsFree
f1
pickFree IsFree
NotFree IsFree
f2 = IsFree
f2
type MonadFreeRed m =
( MonadReader MetaSet m
, MonadState (IntMap IsFree) m
, MonadReduce m
)
class (PrecomputeFreeVars a, Subst a) => ForceNotFree a where
forceNotFree' :: (MonadFreeRed m) => a -> m a
varsToForceNotFree :: (MonadFreeRed m) => m IntSet
varsToForceNotFree :: forall (m :: * -> *). MonadFreeRed m => m IntSet
varsToForceNotFree = (IntMap IsFree -> IntSet) -> m IntSet
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets (IntMap IsFree -> IntSet
forall a. IntMap a -> IntSet
IntMap.keysSet (IntMap IsFree -> IntSet)
-> (IntMap IsFree -> IntMap IsFree) -> IntMap IsFree -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((IsFree -> Bool) -> IntMap IsFree -> IntMap IsFree
forall a. (a -> Bool) -> IntMap a -> IntMap a
IntMap.filter (IsFree -> IsFree -> Bool
forall a. Eq a => a -> a -> Bool
== IsFree
NotFree)))
reduceIfFreeVars :: (Reduce a, ForceNotFree a, MonadFreeRed m)
=> (a -> m a) -> a -> m a
reduceIfFreeVars :: forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
(a -> m a) -> a -> m a
reduceIfFreeVars a -> m a
k a
a = do
xs <- m IntSet
forall (m :: * -> *). MonadFreeRed m => m IntSet
varsToForceNotFree
let fvs = a -> IntSet
forall a. PrecomputeFreeVars a => a -> IntSet
precomputedFreeVars a
a
notfree = IntSet -> IntSet -> Bool
IntSet.disjoint IntSet
xs IntSet
fvs
if notfree
then return a
else k . precomputeFreeVars_ =<< reduce a
forceNotFreeR :: (Reduce a, ForceNotFree a, MonadFreeRed m)
=> a -> m a
forceNotFreeR :: forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR = (a -> m a) -> a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
(a -> m a) -> a -> m a
reduceIfFreeVars a -> m a
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => a -> m a
forceNotFree'
instance (Reduce a, ForceNotFree a) => ForceNotFree (Arg a) where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Arg a -> m (Arg a)
forceNotFree' = (Arg a -> m (Arg a)) -> Arg a -> m (Arg a)
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
(a -> m a) -> a -> m a
reduceIfFreeVars ((a -> m a) -> Arg a -> m (Arg a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Arg a -> f (Arg b)
traverse a -> m a
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => a -> m a
forceNotFree')
instance (Reduce a, ForceNotFree a, TermSubst a) => ForceNotFree (Dom a) where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Dom a -> m (Dom a)
forceNotFree' = (a -> m a) -> Dom a -> m (Dom a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR
instance (Reduce a, ForceNotFree a) => ForceNotFree (Abs a) where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Abs a -> m (Abs a)
forceNotFree' a :: Abs a
a@NoAbs{} = (a -> m a) -> Abs a -> m (Abs a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
traverse a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR Abs a
a
forceNotFree' a :: Abs a
a@Abs{} =
(Abs a -> m (Abs a)) -> Abs a -> m (Abs a)
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
(a -> m a) -> a -> m a
reduceIfFreeVars (m () -> (() -> m ()) -> m (Abs a) -> m (Abs a)
forall (m :: * -> *) a b.
Monad m =>
m a -> (a -> m ()) -> m b -> m b
bracket_ ((IntMap IsFree -> IntMap IsFree) -> m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((IntMap IsFree -> IntMap IsFree) -> m ())
-> (IntMap IsFree -> IntMap IsFree) -> m ()
forall a b. (a -> b) -> a -> b
$ (Int -> Int) -> IntMap IsFree -> IntMap IsFree
forall a. (Int -> Int) -> IntMap a -> IntMap a
IntMap.mapKeys Int -> Int
forall a. Enum a => a -> a
succ) (\ ()
_ -> (IntMap IsFree -> IntMap IsFree) -> m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((IntMap IsFree -> IntMap IsFree) -> m ())
-> (IntMap IsFree -> IntMap IsFree) -> m ()
forall a b. (a -> b) -> a -> b
$ (Int -> Int) -> IntMap IsFree -> IntMap IsFree
forall a. (Int -> Int) -> IntMap a -> IntMap a
IntMap.mapKeys Int -> Int
forall a. Enum a => a -> a
pred) (m (Abs a) -> m (Abs a))
-> (Abs a -> m (Abs a)) -> Abs a -> m (Abs a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
(a -> m a) -> Abs a -> m (Abs a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
traverse a -> m a
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => a -> m a
forceNotFree') Abs a
a
instance ForceNotFree a => ForceNotFree [a] where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => [a] -> m [a]
forceNotFree' = (a -> m a) -> [a] -> m [a]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse a -> m a
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => a -> m a
forceNotFree'
instance (Reduce a, ForceNotFree a) => ForceNotFree (Elim' a) where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Elim' a -> m (Elim' a)
forceNotFree' (Apply Arg a
arg) = Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply (Arg a -> Elim' a) -> m (Arg a) -> m (Elim' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg a -> m (Arg a)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Arg a -> m (Arg a)
forceNotFree' Arg a
arg
forceNotFree' e :: Elim' a
e@Proj{} = Elim' a -> m (Elim' a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Elim' a
e
forceNotFree' (IApply a
x a
y a
r) = a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply (a -> a -> a -> Elim' a) -> m a -> m (a -> a -> Elim' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR a
x m (a -> a -> Elim' a) -> m a -> m (a -> Elim' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR a
y m (a -> Elim' a) -> m a -> m (Elim' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> m a
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR a
r
instance ForceNotFree Type where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Type -> m Type
forceNotFree' (El Sort' Term
s Term
t) = Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Sort' Term -> Term -> Type) -> m (Sort' Term) -> m (Term -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
s m (Term -> Type) -> m Term -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Term -> m Term
forceNotFree' Term
t
instance ForceNotFree Term where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Term -> m Term
forceNotFree' = \case
Var Int
x Elims
es -> do
metas <- m MetaSet
forall r (m :: * -> *). MonadReader r m => m r
ask
modify $ IntMap.adjust (const $ MaybeFree metas) x
Var x <$> forceNotFree' es
Def QName
f Elims
es -> QName -> Elims -> Term
Def QName
f (Elims -> Term) -> m Elims -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> m Elims
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Elims -> m Elims
forceNotFree' Elims
es
Con ConHead
c ConInfo
h Elims
es -> ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
h (Elims -> Term) -> m Elims -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> m Elims
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Elims -> m Elims
forceNotFree' Elims
es
MetaV MetaId
x Elims
es -> (MetaSet -> MetaSet) -> m Term -> m Term
forall a. (MetaSet -> MetaSet) -> m a -> m a
forall r (m :: * -> *) a. MonadReader r m => (r -> r) -> m a -> m a
local (MetaId -> MetaSet -> MetaSet
insertMetaSet MetaId
x) (m Term -> m Term) -> m Term -> m Term
forall a b. (a -> b) -> a -> b
$
MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> m Elims -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> m Elims
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Elims -> m Elims
forceNotFree' Elims
es
Lam ArgInfo
h Abs Term
b -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h (Abs Term -> Term) -> m (Abs Term) -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Term -> m (Abs Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Abs Term -> m (Abs Term)
forceNotFree' Abs Term
b
Pi Dom Type
a Abs Type
b -> Dom Type -> Abs Type -> Term
Pi (Dom Type -> Abs Type -> Term)
-> m (Dom Type) -> m (Abs Type -> Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type -> m (Dom Type)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Dom Type -> m (Dom Type)
forceNotFree' Dom Type
a m (Abs Type -> Term) -> m (Abs Type) -> m Term
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs Type -> m (Abs Type)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Abs Type -> m (Abs Type)
forceNotFree' Abs Type
b
Sort Sort' Term
s -> Sort' Term -> Term
Sort (Sort' Term -> Term) -> m (Sort' Term) -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
s
Level Level
l -> Level -> Term
Level (Level -> Term) -> m Level -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> m Level
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Level -> m Level
forceNotFree' Level
l
DontCare Term
t -> Term -> Term
DontCare (Term -> Term) -> m Term -> m Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall a (m :: * -> *).
(Reduce a, ForceNotFree a, MonadFreeRed m) =>
a -> m a
forceNotFreeR Term
t
t :: Term
t@Lit{} -> Term -> m Term
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t
t :: Term
t@Dummy{} -> Term -> m Term
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
t
instance ForceNotFree Level where
forceNotFree' :: forall (m :: * -> *). MonadFreeRed m => Level -> m Level
forceNotFree' (Max Integer
m [PlusLevel' Term]
as) = Integer -> [PlusLevel' Term] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
m ([PlusLevel' Term] -> Level) -> m [PlusLevel' Term] -> m Level
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PlusLevel' Term] -> m [PlusLevel' Term]
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
[PlusLevel' Term] -> m [PlusLevel' Term]
forceNotFree' [PlusLevel' Term]
as
instance ForceNotFree PlusLevel where
forceNotFree' :: forall (m :: * -> *).
MonadFreeRed m =>
PlusLevel' Term -> m (PlusLevel' Term)
forceNotFree' (Plus Integer
k Term
a) = Integer -> Term -> PlusLevel' Term
forall t. Integer -> t -> PlusLevel' t
Plus Integer
k (Term -> PlusLevel' Term) -> m Term -> m (PlusLevel' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Term -> m Term
forceNotFree' Term
a
instance ForceNotFree Sort where
forceNotFree' :: forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' = \case
Univ Univ
u Level
l -> Univ -> Level -> Sort' Term
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Sort' Term) -> m Level -> m (Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Level -> m Level
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Level -> m Level
forceNotFree' Level
l
PiSort Dom' Term Term
a Sort' Term
b Abs (Sort' Term)
c -> Dom' Term Term -> Sort' Term -> Abs (Sort' Term) -> Sort' Term
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort (Dom' Term Term -> Sort' Term -> Abs (Sort' Term) -> Sort' Term)
-> m (Dom' Term Term)
-> m (Sort' Term -> Abs (Sort' Term) -> Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Term -> m (Dom' Term Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Dom' Term Term -> m (Dom' Term Term)
forceNotFree' Dom' Term Term
a m (Sort' Term -> Abs (Sort' Term) -> Sort' Term)
-> m (Sort' Term) -> m (Abs (Sort' Term) -> Sort' Term)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
b m (Abs (Sort' Term) -> Sort' Term)
-> m (Abs (Sort' Term)) -> m (Sort' Term)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Abs (Sort' Term) -> m (Abs (Sort' Term))
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Abs (Sort' Term) -> m (Abs (Sort' Term))
forceNotFree' Abs (Sort' Term)
c
FunSort Sort' Term
a Sort' Term
b -> Sort' Term -> Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t -> Sort' t
FunSort (Sort' Term -> Sort' Term -> Sort' Term)
-> m (Sort' Term) -> m (Sort' Term -> Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
a m (Sort' Term -> Sort' Term) -> m (Sort' Term) -> m (Sort' Term)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
b
UnivSort Sort' Term
s -> Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t
UnivSort (Sort' Term -> Sort' Term) -> m (Sort' Term) -> m (Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sort' Term -> m (Sort' Term)
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *).
MonadFreeRed m =>
Sort' Term -> m (Sort' Term)
forceNotFree' Sort' Term
s
MetaS MetaId
x Elims
es -> MetaId -> Elims -> Sort' Term
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort' Term) -> m Elims -> m (Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> m Elims
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Elims -> m Elims
forceNotFree' Elims
es
DefS QName
d Elims
es -> QName -> Elims -> Sort' Term
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d (Elims -> Sort' Term) -> m Elims -> m (Sort' Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Elims -> m Elims
forall a (m :: * -> *).
(ForceNotFree a, MonadFreeRed m) =>
a -> m a
forall (m :: * -> *). MonadFreeRed m => Elims -> m Elims
forceNotFree' Elims
es
s :: Sort' Term
s@(Inf Univ
_ Integer
_)-> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
s :: Sort' Term
s@Sort' Term
SizeUniv -> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
s :: Sort' Term
s@Sort' Term
LockUniv -> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
s :: Sort' Term
s@Sort' Term
LevelUniv -> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
s :: Sort' Term
s@Sort' Term
IntervalUniv -> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
s :: Sort' Term
s@DummyS{} -> Sort' Term -> m (Sort' Term)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s