{-# OPTIONS --safe --lossy-unification #-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Path
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism using (isoToPath; isoToEquiv)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.Univalence
open import Cubical.Homotopy.Loopspace
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.HITs.Pushout
open import Cubical.HITs.Pushout.Flattening
open import Cubical.HITs.SmashProduct
open import Cubical.HITs.Susp
open import Cubical.HITs.Join
open import Cubical.HITs.Wedge
module Cubical.Homotopy.HiltonMilnor {ℓ} (X∙@(X , x₀) Y∙@(Y , y₀) : Pointed ℓ) where
fun : X∙ ⋁ Y∙ → typ X∙ × typ Y∙
fun = ⋁↪ {A = X∙} {B = Y∙}
sect : typ (Ω (X∙ ×∙ Y∙)) → typ (Ω (X∙ ⋁∙ₗ Y∙))
sect p = cong (inl ∘ fst) p ∙ push _ ∙ cong (inr ∘ snd) p ∙ sym (push _)
rInv : ∀ c → cong fun (sect c) ≡ c
rInv c = congFunct fun _ _
∙ cong (cong (fun ∘ inl ∘ fst) c ∙_)
(congFunct fun (push _) _
∙ sym (lUnit _)
∙ lemma₂
∙ sym (rUnit _))
∙ lemma₁ (cong fst c) (cong snd c)
where
lemma₁ : (p : x₀ ≡ x₀) (q : y₀ ≡ y₀)
→ cong (_, y₀) p ∙ cong (x₀ ,_) q ≡ cong₂ _,_ p q
lemma₁ p q = cong ΣPathP (ΣPathP
(congFunct fst (cong (_, y₀) p) _ ∙ sym (rUnit _) ,
congFunct snd (cong (_, y₀) p) _ ∙ sym (lUnit _)))
lemma₂ : cong fun
(cong (inr ∘ snd) c ∙ sym (push _))
≡ cong (⋁↪ ∘ inr ∘ snd) c ∙ refl
lemma₂ = congFunct fun _ _
module _ where
open FlatteningLemma
(λ (_ : Unit) → x₀) (λ _ → y₀)
(λ x → (x , y₀) ≡ (x₀ , y₀)) (λ y → (x₀ , y) ≡ (x₀ , y₀))
(λ _ → idEquiv _)
private
E≡ : ∀ u → E u ≡ (⋁↪ u ≡ (x₀ , y₀))
E≡ (inl x) = refl
E≡ (inr x) = refl
E≡ (push a i) j = uaIdEquiv {A = typ (Ω (X∙ ×∙ Y∙))} j i
Pushout≃ : Pushout Σf Σg ≃ join (typ (Ω Y∙)) (typ (Ω X∙))
Pushout≃ = pushoutEquiv _ _ _ _
(ΣUnit _ ∙ₑ invEquiv ΣPathP≃PathPΣ ∙ₑ Σ-swap-≃)
(Σ-cong-equiv-snd (λ _ → invEquiv ΣPathP≃PathPΣ ∙ₑ Σ-swap-≃)
∙ₑ invEquiv Σ-assoc-≃
∙ₑ invEquiv (fiberProjEquiv X _ x₀))
(Σ-cong-equiv-snd (λ _ → invEquiv ΣPathP≃PathPΣ)
∙ₑ invEquiv Σ-assoc-≃
∙ₑ invEquiv (fiberProjEquiv Y _ y₀))
(funExt λ _ → transportRefl _)
(funExt λ _ → transportRefl _)
∙ₑ joinPushout≃join _ _
fiber⋁↪≃ : fiber fun (x₀ , y₀) ≃ join (typ (Ω Y∙)) (typ (Ω X∙))
fiber⋁↪≃ = Σ-cong-equiv-snd (λ a → pathToEquiv (sym (E≡ a)))
∙ₑ flatten ∙ₑ Pushout≃
HMSplit : typ (Ω (X∙ ⋁∙ₗ Y∙)) ≡ typ (Ω X∙) × typ (Ω Y∙) × typ (Ω (Susp∙ (Ω Y∙ ⋀ Ω X∙)))
HMSplit = splitting
∙ cong₂ (λ A B∙ → A × typ (Ω B∙)) (sym ΣPathP≡PathPΣ)
(ua∙ fiber⋁↪≃ refl ∙ ΣPathP
(sym (isoToPath SmashJoinIso) , toPathP refl))
∙ ua Σ-assoc-≃
where open Split (inl x₀) ⋁↪ sect rInv