{-# OPTIONS --safe #-}
module Cubical.HITs.Interval.Base where

open import Cubical.Foundations.Prelude

data Interval : Type₀ where
  zero : Interval
  one  : Interval
  seg  : zero  one

isContrInterval : isContr Interval
isContrInterval = (zero ,  x  rem x))
  where
  rem : (x : Interval)  zero  x
  rem zero      = refl
  rem one       = seg
  rem (seg i) j = seg (i  j)

funExtInterval :  {} (A B : Type ) (f g : A  B)  ((x : A)  f x  g x)  f  g
funExtInterval A B f g p = λ i x  hmtpy x (seg i)
  where
  hmtpy : A  Interval  B
  hmtpy x zero    = f x
  hmtpy x one     = g x
  hmtpy x (seg i) = p x i

elim : (A : Interval  Type₀) (x : A zero) (y : A one)
               (p : PathP  i  A (seg i)) x y)  (x : Interval)  A x
elim A x y p zero    = x
elim A x y p one     = y
elim A x y p (seg i) = p i

-- Note that this is not definitional (it is not proved by refl)
intervalEta :  {A : Type₀} (f : Interval  A)  elim _ (f zero) (f one)  i  f (seg i))  f
intervalEta f i zero    = f zero
intervalEta f i one     = f one
intervalEta f i (seg j) = f (seg j)