module Cubical.Functions.Implicit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
implicit≃Explicit : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ ({a : A} → B a) ≃ ((a : A) → B a)
implicit≃Explicit = isoToEquiv isom
where
isom : Iso _ _
Iso.fun isom f a = f
Iso.inv isom f = f _
Iso.rightInv isom f = funExt λ _ → refl
Iso.leftInv isom f = implicitFunExt refl