{-# OPTIONS --safe #-}
module Cubical.Displayed.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence using (pathToEquiv; univalence; ua-ungluePath-Equiv)
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary
open BinaryRelation
open import Cubical.Displayed.Base
private
variable
ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) where
open UARel 𝒮-A
𝒮-isContrSingl : (a : A) → isContr (Σ[ a' ∈ A ] (a ≅ a'))
𝒮-isContrSingl a =
isOfHLevelRetractFromIso 0
(Σ-cong-iso-snd λ _ → uaIso _ _)
(isContrSingl a)
𝒮-J-customRefl≅ : {a : A} {myRefl : a ≅ a}
(P : (a' : A) → (p : a ≅ a') → Type ℓ)
(d : P a myRefl)
{a' : A}
(p : a ≅ a')
→ P a' p
𝒮-J-customRefl≅ P d p =
subst (uncurry P) (isContr→isProp (𝒮-isContrSingl _) _ _) d
𝒮-J-≅ : {a : A}
(P : (a' : A) → (p : a ≅ a') → Type ℓ)
(d : P a (ρ a))
{a' : A}
(p : a ≅ a')
→ P a' p
𝒮-J-≅ = 𝒮-J-customRefl≅
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB}
(_≅ᴰ⟨_⟩_ : {a a' : A} → B a → UARel._≅_ 𝒮-A a a' → B a' → Type ℓ≅B)
where
open UARel 𝒮-A
private
𝒮ᴰ-make-aux : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b'))
→ ({a a' : A} (b : B a) (p : a ≅ a') (b' : B a') → (b ≅ᴰ⟨ p ⟩ b') ≃ PathP (λ i → B (≅→≡ p i)) b b')
𝒮ᴰ-make-aux uni {a} {a'} b p
= 𝒮-J-≅ 𝒮-A
(λ y q → (b' : B y) → (b ≅ᴰ⟨ q ⟩ b') ≃ PathP (λ i → B (≅→≡ q i)) b b')
(λ b' → uni' b')
p
where
g : (b' : B a) → (b ≡ b') ≡ PathP (λ i → B (≅→≡ (ρ a) i)) b b'
g b' = subst (λ r → (b ≡ b') ≡ PathP (λ i → B (r i)) b b')
(sym (Iso.rightInv (uaIso a a) refl))
refl
uni' : (b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ PathP (λ i → B (≅→≡ (ρ a) i)) b b'
uni' b' = compEquiv (uni b b') (pathToEquiv (g b'))
𝒮ᴰ-make-1 : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b'))
→ DUARel 𝒮-A B ℓ≅B
DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-make-1 uni) = _≅ᴰ⟨_⟩_
DUARel.uaᴰ (𝒮ᴰ-make-1 uni) = 𝒮ᴰ-make-aux uni
𝒮ᴰ-make-2 : (ρᴰ : {a : A} → isRefl _≅ᴰ⟨ ρ a ⟩_)
(contrTotal : (a : A) → contrRelSingl _≅ᴰ⟨ ρ a ⟩_)
→ DUARel 𝒮-A B ℓ≅B
𝒮ᴰ-make-2 ρᴰ contrTotal = 𝒮ᴰ-make-1 (contrRelSingl→isUnivalent _ ρᴰ (contrTotal _))
𝒮-iso→iso : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : Type ℓB} (𝒮-B : UARel B ℓ≅B)
(F : RelIso (UARel._≅_ 𝒮-A) (UARel._≅_ 𝒮-B))
→ Iso A B
𝒮-iso→iso 𝒮-A 𝒮-B F
= RelIso→Iso (UARel._≅_ 𝒮-A)
(UARel._≅_ 𝒮-B)
(UARel.≅→≡ 𝒮-A)
(UARel.≅→≡ 𝒮-B)
F
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{A' : Type ℓA'} {𝒮-A' : UARel A' ℓ≅A'}
(F : Iso A A')
{B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{B' : A' → Type ℓB'} (𝒮ᴰ-B' : DUARel 𝒮-A' B' ℓ≅B') where
open UARel 𝒮-A
open DUARel 𝒮ᴰ-B renaming (_≅ᴰ⟨_⟩_ to _≅B⟨_⟩_
; uaᴰ to uaB
; fiberRel to fiberRelB
; uaᴰρ to uaᴰρB)
open DUARel 𝒮ᴰ-B' renaming (_≅ᴰ⟨_⟩_ to _≅B'⟨_⟩_
; uaᴰ to uaB'
; fiberRel to fiberRelB'
; uaᴰρ to uaᴰρB')
private
f = Iso.fun F
F*fiberRelB' : (a : A) → Rel (B' (f a)) (B' (f a)) ℓ≅B'
F*fiberRelB' a = fiberRelB' (f a)
module _ (G : (a : A) → RelIso (fiberRelB a) (F*fiberRelB' a)) where
private
fiberIsoOver : (a : A) → Iso (B a) (B' (f a))
fiberIsoOver a
= RelIso→Iso (fiberRelB a)
(F*fiberRelB' a)
(equivFun (uaᴰρB _ _))
(equivFun (uaᴰρB' _ _))
(G a)
𝒮ᴰ-fiberIsoOver→totalIso : Iso (Σ A B) (Σ A' B')
𝒮ᴰ-fiberIsoOver→totalIso = Σ-cong-iso F fiberIsoOver