{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Data.Nat.Algebra where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
hiding (section)
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Reflection.StrictEquiv
open import Cubical.Data.Nat.Base
private
variable
ℓ ℓ' : Level
record NatAlgebra ℓ : Type (ℓ-suc ℓ) where
field
Carrier : Type ℓ
alg-zero : Carrier
alg-suc : Carrier → Carrier
record NatMorphism (A : NatAlgebra ℓ) (B : NatAlgebra ℓ') : Type (ℓ-max ℓ ℓ') where
open NatAlgebra
field
morph : A .Carrier → B .Carrier
comm-zero : morph (A .alg-zero) ≡ B .alg-zero
comm-suc : morph ∘ A .alg-suc ≡ B .alg-suc ∘ morph
record NatFiber (N : NatAlgebra ℓ') ℓ : Type (ℓ-max ℓ' (ℓ-suc ℓ)) where
open NatAlgebra N
field
Fiber : Carrier → Type ℓ
fib-zero : Fiber alg-zero
fib-suc : ∀ {n} → Fiber n → Fiber (alg-suc n)
record NatSection {N : NatAlgebra ℓ'} (F : NatFiber N ℓ) : Type (ℓ-max ℓ' ℓ) where
open NatAlgebra N
open NatFiber F
field
section : ∀ n → Fiber n
sec-comm-zero : section alg-zero ≡ fib-zero
sec-comm-suc : ∀ n → section (alg-suc n) ≡ fib-suc (section n)
isNatHInitial : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ))
isNatHInitial N ℓ = (M : NatAlgebra ℓ) → isContr (NatMorphism N M)
isNatInductive : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ))
isNatInductive N ℓ = (S : NatFiber N ℓ) → NatSection S
module AlgebraPropositionality {N : NatAlgebra ℓ'} where
open NatAlgebra N
isPropIsNatHInitial : isProp (isNatHInitial N ℓ)
isPropIsNatHInitial = isPropΠ (λ _ → isPropIsContr)
module SectionProp (ind : isNatInductive N ℓ) {F : NatFiber N ℓ} (S T : NatSection F) where
open NatFiber
open NatSection
ConnectingFiber : NatFiber N ℓ
Fiber ConnectingFiber n = S .section n ≡ T .section n
fib-zero ConnectingFiber = S .sec-comm-zero ∙∙ refl ∙∙ sym (T .sec-comm-zero)
fib-suc ConnectingFiber {n} sntn = S .sec-comm-suc n ∙∙ (λ i → F .fib-suc (sntn i)) ∙∙ sym (T .sec-comm-suc n)
open NatSection (ind ConnectingFiber)
renaming (section to α ; sec-comm-zero to ζ ; sec-comm-suc to σ)
squeezeSquare : ∀{a}{A : Type a}{w x y z : A} (p : w ≡ x) {q : x ≡ y} (r : z ≡ y)
→ (P : w ≡ z) → (sq : P ≡ p ∙∙ q ∙∙ sym r) → I → I → A
squeezeSquare p {q} r P sq i j = transport (sym (PathP≡doubleCompPathʳ p P q r)) sq i j
S≡T : S ≡ T
section (S≡T i) n = α n i
sec-comm-zero (S≡T i) j = squeezeSquare (S .sec-comm-zero) (T .sec-comm-zero) (α alg-zero) ζ j i
sec-comm-suc (S≡T i) n j = squeezeSquare (S .sec-comm-suc n) (T .sec-comm-suc n) (α (alg-suc n)) (σ n) j i
isPropIsNatInductive : isProp (isNatInductive N ℓ)
isPropIsNatInductive a b i F = SectionProp.S≡T a (a F) (b F) i
module AlgebraHInd→HInit {N : NatAlgebra ℓ'} (ind : isNatInductive N ℓ) (M : NatAlgebra ℓ) where
open NatAlgebra
open NatFiber
ConstFiberM : NatFiber N ℓ
Fiber ConstFiberM _ = M .Carrier
fib-zero ConstFiberM = M .alg-zero
fib-suc ConstFiberM = M .alg-suc
morph→section : NatMorphism N M → NatSection ConstFiberM
morph→section x = record { section = morph ; sec-comm-zero = comm-zero ; sec-comm-suc = λ i n → comm-suc n i }
where open NatMorphism x
section→morph : NatSection ConstFiberM → NatMorphism N M
section→morph x = record { morph = section ; comm-zero = sec-comm-zero ; comm-suc = λ n i → sec-comm-suc i n }
where open NatSection x
Morph≡Section : NatSection ConstFiberM ≡ NatMorphism N M
Morph≡Section = ua e
where
unquoteDecl e = declStrictEquiv e section→morph morph→section
isContrMorph : isContr (NatMorphism N M)
isContrMorph = subst isContr Morph≡Section (inhProp→isContr (ind ConstFiberM) (AlgebraPropositionality.SectionProp.S≡T ind))
open NatAlgebra
open NatFiber
open NatSection
open NatMorphism
module AlgebraHInit→Ind (N : NatAlgebra ℓ') ℓ (hinit : isNatHInitial N (ℓ-max ℓ' ℓ)) (F : NatFiber N (ℓ-max ℓ' ℓ)) where
ΣAlgebra : NatAlgebra (ℓ-max ℓ' ℓ)
Carrier ΣAlgebra = Σ (N .Carrier) (F .Fiber)
alg-zero ΣAlgebra = N .alg-zero , F .fib-zero
alg-suc ΣAlgebra (n , fn) = N .alg-suc n , F .fib-suc fn
LiftN : NatAlgebra (ℓ-max ℓ' ℓ)
Carrier LiftN = Lift {_} {ℓ} (N .Carrier)
alg-zero LiftN = lift (N .alg-zero)
alg-suc LiftN = lift ∘ N .alg-suc ∘ lower
_!_ : ∀ {x y} → x ≡ y → F .Fiber x → F .Fiber y
_!_ = subst (F .Fiber)
open NatMorphism (hinit ΣAlgebra .fst) renaming (morph to μ ; comm-zero to μ-zc ; comm-suc to μ-sc)
module _ n where open Σ (μ n) public renaming (fst to α ; snd to α-h)
ζ : α (N .alg-zero) ≡ N .alg-zero
ζ i = μ-zc i .fst
ζ-h : PathP (λ i → F .Fiber (ζ i)) (α-h (N .alg-zero)) (F .fib-zero)
ζ-h i = μ-zc i .snd
σ : ∀ n → α (N .alg-suc n) ≡ N .alg-suc (α n)
σ n i = μ-sc i n .fst
σ-h : ∀ n → PathP (λ i → F .Fiber (σ n i)) (α-h (N .alg-suc n)) (F .fib-suc (α-h n))
σ-h n i = μ-sc i n .snd
liftMorph : NatMorphism N LiftN
liftMorph = record { morph = lift ; comm-zero = refl ; comm-suc = refl }
fst∘μ : NatMorphism N LiftN
morph fst∘μ = lift ∘ α
comm-zero fst∘μ i = lift (ζ i)
comm-suc fst∘μ i n = lift (σ n i)
fst∘μ≡id : fst∘μ ≡ liftMorph
fst∘μ≡id = isContr→isProp (hinit LiftN) _ _
P : ∀ n → α n ≡ n
P n i = lower (fst∘μ≡id i .morph n)
Q-zero : α (N .alg-zero) ≡ N .alg-zero
Q-zero = ζ
Q-suc : ∀ n → α (N .alg-suc n) ≡ N .alg-suc n
Q-suc n = σ n ∙ cong (N .alg-suc) (P n)
P-zero : P (N .alg-zero) ≡ Q-zero
P-zero i j = hcomp (λ k → λ where
(i = i0) → lower (fst∘μ≡id j .comm-zero (~ k))
(i = i1) → ζ (j ∨ ~ k)
(j = i0) → ζ (~ k)
(j = i1) → N .alg-zero
) (N .alg-zero)
P-suc : ∀ n → P (N .alg-suc n) ≡ Q-suc n
P-suc n i j = hcomp (λ k → λ where
(i = i0) → lower (fst∘μ≡id j .comm-suc (~ k) n)
(i = i1) → compPath-filler' (σ n) (cong (N .alg-suc) (P n)) k j
(j = i0) → σ n (~ k)
(j = i1) → N .alg-suc n
) (N .alg-suc (P n j))
Fsection : NatSection F
section Fsection n = P n ! α-h n
sec-comm-zero Fsection =
P (N .alg-zero) ! α-h (N .alg-zero)
≡[ i ]⟨ P-zero i ! α-h _ ⟩
Q-zero ! α-h (N .alg-zero)
≡⟨ fromPathP ζ-h ⟩
F .fib-zero
∎
sec-comm-suc Fsection n =
P (N .alg-suc n) ! α-h (N .alg-suc n)
≡[ i ]⟨ P-suc n i ! α-h _ ⟩
Q-suc n ! α-h (N .alg-suc n)
≡⟨ substComposite (F .Fiber) (σ n) (cong (N .alg-suc) (P n)) _ ⟩
cong (N .alg-suc) (P n) ! (σ n ! α-h (N .alg-suc n))
≡[ i ]⟨ cong (N .alg-suc) (P n) ! fromPathP (σ-h n) i ⟩
cong (N .alg-suc) (P n) ! (F .fib-suc (α-h n))
≡⟨ substCommSlice (F .Fiber) (F .Fiber ∘ N .alg-suc) (λ _ → F .fib-suc) (P n) (α-h n) ⟩
F .fib-suc (P n ! α-h n)
∎
isNatInductive≡isNatHInitial : {N : NatAlgebra ℓ'} (ℓ : Level)
→ isNatInductive N (ℓ-max ℓ' ℓ) ≡ isNatHInitial N (ℓ-max ℓ' ℓ)
isNatInductive≡isNatHInitial {_} {N} ℓ = hPropExt isPropIsNatInductive isPropIsNatHInitial ind→init init→ind where
open AlgebraPropositionality
open AlgebraHInit→Ind N ℓ renaming (Fsection to init→ind)
open AlgebraHInd→HInit renaming (isContrMorph to ind→init)
isNatHInitial→algebraPath : {N M : NatAlgebra ℓ}
→ (hinitN : isNatHInitial N ℓ) (hinitM : isNatHInitial M ℓ)
→ N ≡ M
isNatHInitial→algebraPath {N = N} {M} hinitN hinitM = N≡M where
open Σ (hinitN M) renaming (fst to N→M)
open Σ (hinitM N) renaming (fst to M→N)
idN : NatMorphism N N
idN = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl }
idM : NatMorphism M M
idM = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl }
N→M→N : NatMorphism N N
morph N→M→N = morph M→N ∘ morph N→M
comm-zero N→M→N = (λ i → morph M→N (comm-zero N→M i)) ∙ comm-zero M→N
comm-suc N→M→N = (λ i → morph M→N ∘ comm-suc N→M i) ∙ (λ i → comm-suc M→N i ∘ morph N→M)
nmn≡idn : N→M→N ≡ idN
nmn≡idn = isContr→isProp (hinitN N) _ _
M→N→M : NatMorphism M M
morph M→N→M = morph N→M ∘ morph M→N
comm-zero M→N→M = (λ i → morph N→M (comm-zero M→N i)) ∙ comm-zero N→M
comm-suc M→N→M = (λ i → morph N→M ∘ comm-suc M→N i) ∙ (λ i → comm-suc N→M i ∘ morph M→N)
mnm≡idm : M→N→M ≡ idM
mnm≡idm = isContr→isProp (hinitM M) _ _
carrier≡ : N .Carrier ≡ M .Carrier
carrier≡ = isoToPath (iso (N→M .morph) (M→N .morph) (λ x i → mnm≡idm i .morph x) (λ x i → nmn≡idn i .morph x))
zero≡ : PathP (λ i → carrier≡ i) (N .alg-zero) (M .alg-zero)
zero≡ = toPathP λ i → transportRefl (N→M .comm-zero i) i
suc≡ : PathP (λ i → carrier≡ i → carrier≡ i) (N .alg-suc) (M .alg-suc)
suc≡ = toPathP (
transport refl ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transport refl
≡[ i ]⟨ transportReflF i ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transportReflF i ⟩
N→M .morph ∘ N .alg-suc ∘ M→N .morph
≡[ i ]⟨ N→M .comm-suc i ∘ M→N .morph ⟩
M .alg-suc ∘ N→M .morph ∘ M→N .morph
≡[ i ]⟨ M .alg-suc ∘ mnm≡idm i .morph ⟩
M .alg-suc
∎) where
transportReflF : transport refl ≡ (λ x → x)
transportReflF = funExt transportRefl
N≡M : N ≡ M
Carrier (N≡M i) = carrier≡ i
alg-zero (N≡M i) = zero≡ i
alg-suc (N≡M i) = suc≡ i
NatAlgebraℕ : NatAlgebra ℓ-zero
Carrier NatAlgebraℕ = ℕ
alg-zero NatAlgebraℕ = zero
alg-suc NatAlgebraℕ = suc
isNatInductiveℕ : isNatInductive NatAlgebraℕ ℓ
section (isNatInductiveℕ F) = nat-sec where
nat-sec : ∀ n → F .Fiber n
nat-sec zero = F .fib-zero
nat-sec (suc n) = F .fib-suc (nat-sec n)
sec-comm-zero (isNatInductiveℕ F) = refl
sec-comm-suc (isNatInductiveℕ F) n = refl
isNatHInitialℕ : isNatHInitial NatAlgebraℕ ℓ
isNatHInitialℕ = transport (isNatInductive≡isNatHInitial _) isNatInductiveℕ