{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Type ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ} -- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more -- informative as they demonstrate the computational behavior. -- -- Full inference rules can be found in Section 6 of CCHM: -- https://arxiv.org/pdf/1611.02108.pdf -- Cubical Type Theory: a constructive interpretation of the univalence axiom -- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg private module GluePrims (A : Type ℓ) {φ : I} (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) where T : Partial φ (Type ℓ') T φ1 = Te φ1 .fst e : PartialP φ (λ φ → T φ ≃ A) e φ1 = Te φ1 .snd -- Glue can be seen as a subtype of Type that, at φ, is definitionally equal to the left type -- of the given equivalences. Glue-S : Type ℓ' [ φ ↦ T ] Glue-S = inS (Glue A Te) -- Which means partial elements of T are partial elements of Glue coeT→G : ∀ (t : PartialP φ T) → Partial φ (Glue A Te) coeT→G t (φ = i1) = t 1=1 -- ... and elements of Glue can be seen as partial elements of T coeG→T : ∀ (g : Glue A Te) → PartialP φ T coeG→T g (φ = i1) = g -- What about elements that are applied to the equivalences? trans-e : ∀ (t : PartialP φ T) → Partial φ A trans-e t ϕ1 = equivFun (e ϕ1) (t ϕ1) -- glue gives a partial element of Glue given an element of A. Note that it "undoes" -- the application of the equivalences! glue-S : ∀ (t : PartialP φ T) → A [ φ ↦ trans-e t ] → Glue A Te [ φ ↦ coeT→G t ] glue-S t s = inS (glue t (outS s)) -- typechecking glue enforces this, e.g. you can not simply write -- glue-bad : (t : PartialP φ T) → A → Glue A Te -- glue-bad t s = glue t s -- unglue does the inverse: unglue-S : ∀ (b : Glue A Te) → A [ φ ↦ trans-e (coeG→T b) ] unglue-S b = inS (unglue φ b) module GlueTransp (A : I → Type ℓ) (Te : (i : I) → Partial (i ∨ ~ i) (Σ[ T ∈ Type ℓ' ] T ≃ A i)) where A0 A1 : Type ℓ A0 = A i0 A1 = A i1 T : (i : I) → Partial (i ∨ ~ i) (Type ℓ') T i φ = Te i φ .fst e : (i : I) → PartialP (i ∨ ~ i) (λ φ → T i φ ≃ A i) e i φ = Te i φ .snd T0 T1 : Type ℓ' T0 = T i0 1=1 T1 = T i1 1=1 e0 : T0 ≃ A0 e0 = e i0 1=1 e1 : T1 ≃ A1 e1 = e i1 1=1 transportA : A0 → A1 transportA = transp (λ i → A i) i0 -- copied over from Foundations/Equiv for readability, can't directly import due to cyclic dependency invEq : ∀ {X : Type ℓ'} {ℓ''} {Y : Type ℓ''} (w : X ≃ Y) → Y → X invEq w y = w .snd .equiv-proof y .fst .fst -- transport in Glue reduces to transport in A + the application of the equivalences in forward and backward -- direction. transp-S : (t0 : T0) → T1 [ i1 ↦ (λ _ → invEq e1 (transportA (equivFun e0 t0))) ] transp-S t0 = inS (transp (λ i → Glue (A i) (Te i)) i0 t0)