{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.Constructions.TotalCategory where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Instances.Terminal hiding (introF)
open import Cubical.Categories.Constructions.TotalCategory as TC hiding (intro)
private
variable
ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓCᴰ ℓCᴰ' ℓDᴰ ℓDᴰ' ℓEᴰ ℓEᴰ' : Level
module _ {C : Category ℓC ℓC'}
(Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
(Dᴰ : Categoryᴰ (∫C Cᴰ) ℓDᴰ ℓDᴰ')
where
open Categoryᴰ
private
module Cᴰ = Categoryᴰ Cᴰ
module Dᴰ = Categoryᴰ Dᴰ
∫Cᴰ : Categoryᴰ C (ℓ-max ℓCᴰ ℓDᴰ) (ℓ-max ℓCᴰ' ℓDᴰ')
∫Cᴰ .ob[_] x = Σ[ xᴰ ∈ Cᴰ.ob[ x ] ] Dᴰ.ob[ x , xᴰ ]
∫Cᴰ .Hom[_][_,_] f (_ , zᴰ) (_ , wᴰ) =
Σ[ fᴰ ∈ Cᴰ.Hom[ f ][ _ , _ ] ] Dᴰ.Hom[ f , fᴰ ][ zᴰ , wᴰ ]
∫Cᴰ .idᴰ = Cᴰ.idᴰ , Dᴰ.idᴰ
∫Cᴰ ._⋆ᴰ_ (_ , hᴰ) (_ , kᴰ) = _ , hᴰ Dᴰ.⋆ᴰ kᴰ
∫Cᴰ .⋆IdLᴰ _ = ΣPathP (_ , Dᴰ.⋆IdLᴰ _)
∫Cᴰ .⋆IdRᴰ _ = ΣPathP (_ , Dᴰ.⋆IdRᴰ _)
∫Cᴰ .⋆Assocᴰ _ _ _ = ΣPathP (_ , Dᴰ.⋆Assocᴰ _ _ _)
∫Cᴰ .isSetHomᴰ = isSetΣ Cᴰ.isSetHomᴰ (λ _ → Dᴰ.isSetHomᴰ)
module _ {C : Category ℓC ℓC'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
(Dᴰ : Categoryᴰ (∫C Cᴰ) ℓDᴰ ℓDᴰ')
where
hasPropHoms∫Cᴰ : hasPropHoms Cᴰ → hasPropHoms Dᴰ → hasPropHoms (∫Cᴰ Cᴰ Dᴰ)
hasPropHoms∫Cᴰ ph-Cᴰ ph-Dᴰ f cᴰ cᴰ' = isPropΣ
(ph-Cᴰ f (cᴰ .fst) (cᴰ' .fst))
(λ fᴰ → ph-Dᴰ (f , fᴰ) (cᴰ .snd) (cᴰ' .snd))
private
module Cᴰ = Categoryᴰ Cᴰ
module Dᴰ = Categoryᴰ Dᴰ
∫∫Cᴰ = ∫C {C = C} (∫Cᴰ Cᴰ Dᴰ)
open Functor
open Functorᴰ
Assocᴰ : Functor ∫∫Cᴰ (∫C Dᴰ)
Assocᴰ .F-ob x = (x .fst , x .snd .fst) , x .snd .snd
Assocᴰ .F-hom f = (f .fst , f .snd .fst) , f .snd .snd
Assocᴰ .F-id = refl
Assocᴰ .F-seq _ _ = refl
Assocᴰ⁻ : Functor (∫C Dᴰ) ∫∫Cᴰ
Assocᴰ⁻ .F-ob x = x .fst .fst , x .fst .snd , x .snd
Assocᴰ⁻ .F-hom f = f .fst .fst , f .fst .snd , f .snd
Assocᴰ⁻ .F-id = refl
Assocᴰ⁻ .F-seq _ _ = refl
Fstᴰ : Functorᴰ Id (∫Cᴰ Cᴰ Dᴰ) Cᴰ
Fstᴰ .F-obᴰ = fst
Fstᴰ .F-homᴰ = fst
Fstᴰ .F-idᴰ = refl
Fstᴰ .F-seqᴰ _ _ = refl
open Section
module _ {Eᴰ : Categoryᴰ ∫∫Cᴰ ℓEᴰ ℓEᴰ'} where
elimGlobal : Section Assocᴰ⁻ Eᴰ → GlobalSection Eᴰ
elimGlobal s .F-obᴰ d = s .F-obᴰ ((d .fst , d .snd .fst) , d .snd .snd)
elimGlobal s .F-homᴰ f = s .F-homᴰ ((f .fst , f .snd .fst) , f .snd .snd)
elimGlobal s .F-idᴰ = s .F-idᴰ
elimGlobal s .F-seqᴰ _ _ = s .F-seqᴰ _ _
module _ {E : Category ℓE ℓE'} (F : Functor E C)
(Fᴰ : Section F Cᴰ)
(Gᴰ : Section (TC.intro F Fᴰ) Dᴰ)
where
introS : Section F (∫Cᴰ Cᴰ Dᴰ)
introS .F-obᴰ d = Fᴰ .F-obᴰ d , Gᴰ .F-obᴰ d
introS .F-homᴰ f = Fᴰ .F-homᴰ f , Gᴰ .F-homᴰ f
introS .F-idᴰ = ΣPathP (Fᴰ .F-idᴰ , Gᴰ .F-idᴰ)
introS .F-seqᴰ f g = ΣPathP (Fᴰ .F-seqᴰ f g , Gᴰ .F-seqᴰ f g)
module _ {E : Category ℓE ℓE'} {Eᴰ : Categoryᴰ E ℓEᴰ ℓEᴰ'} (F : Functor E C)
(Fᴰ : Functorᴰ F Eᴰ Cᴰ)
(Gᴰ : Section (∫F Fᴰ) Dᴰ)
where
introF : Functorᴰ F Eᴰ (∫Cᴰ Cᴰ Dᴰ)
introF = TC.recᴰ _ _ (introS _ (elim Fᴰ)
(reindS' (Eq.refl , Eq.refl) Gᴰ))