module Cubical.Categories.Constructions.Opposite where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base

open import Cubical.Categories.Isomorphism

private
  variable
    ℓC ℓC' ℓD ℓD' : Level

open Category
open Functor
open isUnivalent

module _ {C : Category ℓC ℓC'} (isUnivC : isUnivalent C) where
  op-Iso-pathToIso :  {x y : C .ob} (p : x  y)
                    op-Iso (pathToIso {C = C} p)  pathToIso {C = C ^op} p
  op-Iso-pathToIso =
    J  y p  op-Iso (pathToIso {C = C} p)  pathToIso {C = C ^op} p)
      (CatIso≡ _ _ refl)

  op-Iso⁻-pathToIso :  {x y : C .ob} (p : x  y)
                    op-Iso⁻ (pathToIso {C = C ^op} p)  pathToIso {C = C} p
  op-Iso⁻-pathToIso =
    J  _ p  op-Iso⁻ (pathToIso p)  pathToIso p) (CatIso≡ _ _ refl)

  isUnivalentOp : isUnivalent (C ^op)
  isUnivalentOp .univ x y = isIsoToIsEquiv
    (  f^op  CatIsoToPath isUnivC (op-Iso⁻ f^op))
    ,  f^op  CatIso≡ _ _
      (cong fst (cong op-Iso (secEq (univEquiv isUnivC _ _) (op-Iso⁻ f^op)))))
    , λ p 
        cong (CatIsoToPath isUnivC) (op-Iso⁻-pathToIso p)
         retEq (univEquiv isUnivC _ _) p)