module Cubical.CW.Instances.Empty where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Fin.Inductive
open import Cubical.Data.Empty
open import Cubical.HITs.Pushout
open import Cubical.HITs.SequentialColimit
open import Cubical.HITs.PropositionalTruncation
open import Cubical.CW.Base
module _ (ℓ : Level) where
finCWskel⊥* : finCWskel ℓ 0
fst finCWskel⊥* _ = ⊥*
fst (fst (snd finCWskel⊥*)) _ = 0
fst (snd (fst (snd finCWskel⊥*))) _ (x , _) = lift (¬Fin0 x)
fst (snd (snd (fst (snd finCWskel⊥*)))) ()
snd (snd (snd (fst (snd finCWskel⊥*)))) n =
uninhabEquiv (λ())
λ x → invEq LiftEquiv
((Iso.inv (PushoutEmptyFam (λ x → ¬Fin0 (fst x)) ¬Fin0)) x)
snd (snd finCWskel⊥*) _ = uninhabEquiv _ (λ{()}) .snd
CWskel⊥* : CWskel ℓ
CWskel⊥* = finCWskel→CWskel 0 finCWskel⊥*
hasFinCWskel⊥* : hasFinCWskel ⊥*
fst hasFinCWskel⊥* = 0
fst (snd hasFinCWskel⊥*) = finCWskel⊥*
snd (snd hasFinCWskel⊥*) =
uninhabEquiv (λ{()}) λ{ (incl ()) ; (push () i)}
hasCWskel⊥* : hasCWskel ⊥*
fst hasCWskel⊥* = CWskel⊥*
snd hasCWskel⊥* =
uninhabEquiv (λ{()}) λ{ (incl ()) ; (push () i)}
finCW⊥* : finCW ℓ
fst finCW⊥* = ⊥*
snd finCW⊥* = ∣ hasFinCWskel⊥* ∣₁
finCWskel⊥ : finCWskel ℓ-zero 0
fst finCWskel⊥ _ = ⊥
fst (fst (snd finCWskel⊥)) _ = 0
fst (snd (fst (snd finCWskel⊥))) _ (x , _) = ¬Fin0 x
fst (snd (snd (fst (snd finCWskel⊥)))) ()
snd (snd (snd (fst (snd finCWskel⊥)))) n =
uninhabEquiv (λ())
(Iso.inv (PushoutEmptyFam (λ x → ¬Fin0 (fst x)) ¬Fin0))
snd (snd finCWskel⊥) _ = uninhabEquiv _ (λ{()}) .snd
CWskel⊥ : CWskel ℓ-zero
CWskel⊥ = finCWskel→CWskel 0 finCWskel⊥
hasFinCWskel⊥ : hasFinCWskel ⊥
fst hasFinCWskel⊥ = 0
fst (snd hasFinCWskel⊥) = finCWskel⊥
snd (snd hasFinCWskel⊥) =
uninhabEquiv (λ{()}) λ{ (incl ()) ; (push () i)}
hasCWskel⊥ : hasCWskel ⊥
fst hasCWskel⊥ = CWskel⊥
snd hasCWskel⊥ =
uninhabEquiv (λ{()}) λ{ (incl ()) ; (push () i)}
finCW⊥ : finCW ℓ-zero
fst finCW⊥ = ⊥
snd finCW⊥ = ∣ hasFinCWskel⊥ ∣₁