{-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice.BigOps where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.FinData
open import Cubical.Data.Bool hiding (_≤_)
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Monoid.BigOp
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Relation.Binary.Order.Poset
private
variable
ℓ ℓ' : Level
module KroneckerDelta (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
δ : {n : ℕ} (i j : Fin n) → L
δ i j = if i == j then 1l else 0l
module Join (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
open MonoidBigOp (Semilattice→Monoid (Lattice→JoinSemilattice (DistLattice→Lattice L')))
open LatticeTheory (DistLattice→Lattice L')
open KroneckerDelta L'
⋁ = bigOp
⋁Ext = bigOpExt
⋁0l = bigOpε
⋁Last = bigOpLast
⋁Split : ∀ {n} → (V W : FinVec L n) → ⋁ (λ i → V i ∨l W i) ≡ ⋁ V ∨l ⋁ W
⋁Split = bigOpSplit ∨lComm
⋁Split++ : ∀ {n m : ℕ} (V : FinVec L n) (W : FinVec L m)
→ ⋁ (V ++Fin W) ≡ ⋁ V ∨l ⋁ W
⋁Split++ = bigOpSplit++
⋁Meetrdist : ∀ {n} → (x : L) → (V : FinVec L n)
→ x ∧l ⋁ V ≡ ⋁ λ i → x ∧l V i
⋁Meetrdist {n = zero} x _ = 0lRightAnnihilates∧l x
⋁Meetrdist {n = suc n} x V =
x ∧l (V zero ∨l ⋁ (V ∘ suc)) ≡⟨ ∧lLdist∨l _ _ _ ⟩
(x ∧l V zero) ∨l (x ∧l ⋁ (V ∘ suc)) ≡⟨ (λ i → (x ∧l V zero) ∨l ⋁Meetrdist x (V ∘ suc) i) ⟩
(x ∧l V zero) ∨l ⋁ (λ i → x ∧l V (suc i)) ∎
⋁Meetldist : ∀ {n} → (x : L) → (V : FinVec L n)
→ (⋁ V) ∧l x ≡ ⋁ λ i → V i ∧l x
⋁Meetldist {n = zero} x _ = 0lLeftAnnihilates∧l x
⋁Meetldist {n = suc n} x V =
(V zero ∨l ⋁ (V ∘ suc)) ∧l x ≡⟨ ∧lRdist∨l _ _ _ ⟩
(V zero ∧l x) ∨l ((⋁ (V ∘ suc)) ∧l x) ≡⟨ (λ i → (V zero ∧l x) ∨l ⋁Meetldist x (V ∘ suc) i) ⟩
(V zero ∧l x) ∨l ⋁ (λ i → V (suc i) ∧l x) ∎
⋁Meetr0 : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → V i ∧l 0l) ≡ 0l
⋁Meetr0 V = sym (⋁Meetldist 0l V) ∙ 0lRightAnnihilates∧l _
⋁Meet0r : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → 0l ∧l V i) ≡ 0l
⋁Meet0r V = sym (⋁Meetrdist 0l V) ∙ 0lLeftAnnihilates∧l _
⋁Meetr1 : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → V i ∧l δ i j) ≡ V j
⋁Meetr1 (suc n) V zero = (λ k → ∧lRid (V zero) k ∨l ⋁Meetr0 (V ∘ suc) k) ∙ ∨lRid (V zero)
⋁Meetr1 (suc n) V (suc j) =
(λ i → 0lRightAnnihilates∧l (V zero) i ∨l ⋁ (λ x → V (suc x) ∧l δ x j))
∙∙ ∨lLid _ ∙∙ ⋁Meetr1 n (V ∘ suc) j
⋁Meet1r : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → (δ j i) ∧l V i) ≡ V j
⋁Meet1r (suc n) V zero = (λ k → ∧lLid (V zero) k ∨l ⋁Meet0r (V ∘ suc) k) ∙ ∨lRid (V zero)
⋁Meet1r (suc n) V (suc j) =
(λ i → 0lLeftAnnihilates∧l (V zero) i ∨l ⋁ (λ i → (δ j i) ∧l V (suc i)))
∙∙ ∨lLid _ ∙∙ ⋁Meet1r n (V ∘ suc) j
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L'))
ind≤⋁ = ind≤bigOp
⋁IsMax = bigOpIsMax
≤-⋁Ext = ≤-bigOpExt
module JoinMap {L : DistLattice ℓ} {L' : DistLattice ℓ'} (φ : DistLatticeHom L L') where
private module L = Join L
private module L' = Join L'
open BigOpMap (LatticeHom→JoinSemilatticeHom φ)
pres⋁ : {n : ℕ} (U : FinVec ⟨ L ⟩ n) → φ .fst (L.⋁ U) ≡ L'.⋁ (φ .fst ∘ U)
pres⋁ = presBigOp
module Meet (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
open MonoidBigOp (Semilattice→Monoid (Lattice→MeetSemilattice (DistLattice→Lattice L')))
open LatticeTheory (DistLattice→Lattice L')
open KroneckerDelta L'
⋀ = bigOp
⋀Ext = bigOpExt
⋀1l = bigOpε
⋀Last = bigOpLast
⋀Split : ∀ {n} → (V W : FinVec L n) → ⋀ (λ i → V i ∧l W i) ≡ ⋀ V ∧l ⋀ W
⋀Split = bigOpSplit ∧lComm
⋀Joinrdist : ∀ {n} → (x : L) → (V : FinVec L n)
→ x ∨l ⋀ V ≡ ⋀ λ i → x ∨l V i
⋀Joinrdist {n = zero} x _ = 1lRightAnnihilates∨l x
⋀Joinrdist {n = suc n} x V =
x ∨l (V zero ∧l ⋀ (V ∘ suc)) ≡⟨ ∨lLdist∧l _ _ _ ⟩
(x ∨l V zero) ∧l (x ∨l ⋀ (V ∘ suc)) ≡⟨ (λ i → (x ∨l V zero) ∧l ⋀Joinrdist x (V ∘ suc) i) ⟩
(x ∨l V zero) ∧l ⋀ (λ i → x ∨l V (suc i)) ∎
⋀Joinldist : ∀ {n} → (x : L) → (V : FinVec L n)
→ (⋀ V) ∨l x ≡ ⋀ λ i → V i ∨l x
⋀Joinldist {n = zero} x _ = 1lLeftAnnihilates∨l x
⋀Joinldist {n = suc n} x V =
(V zero ∧l ⋀ (V ∘ suc)) ∨l x ≡⟨ ∨lRdist∧l _ _ _ ⟩
(V zero ∨l x) ∧l ((⋀ (V ∘ suc)) ∨l x) ≡⟨ (λ i → (V zero ∨l x) ∧l ⋀Joinldist x (V ∘ suc) i) ⟩
(V zero ∨l x) ∧l ⋀ (λ i → V (suc i) ∨l x) ∎
⋀Joinr1 : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → V i ∨l 1l) ≡ 1l
⋀Joinr1 V = sym (⋀Joinldist 1l V) ∙ 1lRightAnnihilates∨l _
⋀Join1r : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → 1l ∨l V i) ≡ 1l
⋀Join1r V = sym (⋀Joinrdist 1l V) ∙ 1lLeftAnnihilates∨l _
module MeetMap {L : DistLattice ℓ} {L' : DistLattice ℓ'} (φ : DistLatticeHom L L') where
private module L = Meet L
private module L' = Meet L'
open BigOpMap (LatticeHom→MeetSemilatticeHom φ)
pres⋀ : {n : ℕ} (U : FinVec ⟨ L ⟩ n) → φ .fst (L.⋀ U) ≡ L'.⋀ (φ .fst ∘ U)
pres⋀ = presBigOp