module Cubical.Algebra.CommRing.Instances.Unit where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ ℓ' : Level open CommRingStr UnitCommRing : CommRing ℓ fst UnitCommRing = Unit* 0r (snd UnitCommRing) = tt* 1r (snd UnitCommRing) = tt* _+_ (snd UnitCommRing) = λ _ _ → tt* _·_ (snd UnitCommRing) = λ _ _ → tt* - snd UnitCommRing = λ _ → tt* isCommRing (snd UnitCommRing) = makeIsCommRing isSetUnit* (λ _ _ _ → refl) (λ { tt* → refl }) (λ _ → refl) (λ _ _ → refl) (λ _ _ _ → refl) (λ { tt* → refl }) (λ _ _ _ → refl) (λ _ _ → refl) mapToUnitCommRing : {ℓ : Level} (R : CommRing ℓ') → CommRingHom R (UnitCommRing {ℓ = ℓ}) mapToUnitCommRing R .fst = λ _ → tt* mapToUnitCommRing R .snd .IsCommRingHom.pres0 = refl mapToUnitCommRing R .snd .IsCommRingHom.pres1 = refl mapToUnitCommRing R .snd .IsCommRingHom.pres+ = λ _ _ → refl mapToUnitCommRing R .snd .IsCommRingHom.pres· = λ _ _ → refl mapToUnitCommRing R .snd .IsCommRingHom.pres- = λ _ → refl isPropMapToUnitCommRing : {ℓ : Level} (R : CommRing ℓ') → isProp (CommRingHom R (UnitCommRing {ℓ = ℓ})) isPropMapToUnitCommRing R f g = CommRingHom≡ (funExt λ _ → refl)