module Cubical.Algebra.CommMonoid.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsCommMonoid {M : Type ℓ}
(ε : M) (_·_ : M → M → M) : Type ℓ where
constructor iscommmonoid
field
isMonoid : IsMonoid ε _·_
·Comm : (x y : M) → x · y ≡ y · x
open IsMonoid isMonoid public
unquoteDecl IsCommMonoidIsoΣ = declareRecordIsoΣ IsCommMonoidIsoΣ (quote IsCommMonoid)
record CommMonoidStr (M : Type ℓ) : Type ℓ where
constructor commmonoidstr
field
ε : M
_·_ : M → M → M
isCommMonoid : IsCommMonoid ε _·_
infixl 7 _·_
open IsCommMonoid isCommMonoid public
CommMonoid : ∀ ℓ → Type (ℓ-suc ℓ)
CommMonoid ℓ = TypeWithStr ℓ CommMonoidStr
makeIsCommMonoid : {M : Type ℓ} {ε : M} {_·_ : M → M → M}
(is-setM : isSet M)
(·Assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z)
(·IdR : (x : M) → x · ε ≡ x)
(·Comm : (x y : M) → x · y ≡ y · x)
→ IsCommMonoid ε _·_
IsCommMonoid.isMonoid (makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm) =
makeIsMonoid is-setM ·Assoc ·IdR (λ x → ·Comm _ _ ∙ ·IdR x)
IsCommMonoid.·Comm (makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm) = ·Comm
makeCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M)
(is-setM : isSet M)
(·Assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z)
(·IdR : (x : M) → x · ε ≡ x)
(·Comm : (x y : M) → x · y ≡ y · x)
→ CommMonoid ℓ
fst (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm) = _
CommMonoidStr.ε (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) = ε
CommMonoidStr._·_ (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) = _·_
CommMonoidStr.isCommMonoid (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) =
makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm
CommMonoidStr→MonoidStr : {A : Type ℓ} → CommMonoidStr A → MonoidStr A
CommMonoidStr→MonoidStr (commmonoidstr _ _ H) = monoidstr _ _ (IsCommMonoid.isMonoid H)
CommMonoid→Monoid : CommMonoid ℓ → Monoid ℓ
CommMonoid→Monoid (_ , commmonoidstr _ _ M) = _ , monoidstr _ _ (IsCommMonoid.isMonoid M)
CommMonoidHom : (L : CommMonoid ℓ) (M : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ')
CommMonoidHom L M = MonoidHom (CommMonoid→Monoid L) (CommMonoid→Monoid M)
IsCommMonoidEquiv : {A : Type ℓ} {B : Type ℓ'}
(M : CommMonoidStr A) (e : A ≃ B) (N : CommMonoidStr B) → Type (ℓ-max ℓ ℓ')
IsCommMonoidEquiv M e N = IsMonoidHom (CommMonoidStr→MonoidStr M) (e .fst) (CommMonoidStr→MonoidStr N)
CommMonoidEquiv : (M : CommMonoid ℓ) (N : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ')
CommMonoidEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsCommMonoidEquiv (M .snd) e (N .snd)
isPropIsCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M)
→ isProp (IsCommMonoid ε _·_)
isPropIsCommMonoid ε _·_ =
isOfHLevelRetractFromIso 1 IsCommMonoidIsoΣ
(isPropΣ (isPropIsMonoid ε _·_)
λ mon → isPropΠ2 (λ _ _ → mon .is-set _ _))
where
open IsMonoid
𝒮ᴰ-CommMonoid : DUARel (𝒮-Univ ℓ) CommMonoidStr ℓ
𝒮ᴰ-CommMonoid =
𝒮ᴰ-Record (𝒮-Univ _) IsCommMonoidEquiv
(fields:
data[ ε ∣ autoDUARel _ _ ∣ presε ]
data[ _·_ ∣ autoDUARel _ _ ∣ pres· ]
prop[ isCommMonoid ∣ (λ _ _ → isPropIsCommMonoid _ _) ])
where
open CommMonoidStr
open IsMonoidHom
CommMonoidPath : (M N : CommMonoid ℓ) → CommMonoidEquiv M N ≃ (M ≡ N)
CommMonoidPath = ∫ 𝒮ᴰ-CommMonoid .UARel.ua