{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.DirectProduct where open import Cubical.Data.Sigma open import Cubical.Algebra.AbGroup.Base open import Cubical.Algebra.Group.DirProd AbDirProd : ∀ {ℓ ℓ'} → AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ') AbDirProd G H = Group→AbGroup (DirProd (AbGroup→Group G) (AbGroup→Group H)) comm where comm : (x y : fst G × fst H) → _ ≡ _ comm (g1 , h1) (g2 , h2) = ΣPathP (AbGroupStr.+Comm (snd G) g1 g2 , AbGroupStr.+Comm (snd H) h1 h2)