module Irr where

open import Agda.Builtin.Nat

infixr 7 _∷_
data Vec (A : Set) : @0 Nat  Set where
  []  : Vec A 0
  _∷_ :  {@0 n}  A  Vec A n  Vec A (suc n)

map :  {A B : Set} {@0 n}  (A  B)  Vec A n  Vec B n
map f [] = []
map f (x  xs) = f x  map f xs

xs : Vec Nat 2
xs = 1  0  []

ys : Vec Nat 2
ys = map suc xs
{-# COMPILE AGDA2LAMBOX ys #-}
Debug λ☐ Rocq