module Agda.TypeChecking.Polarity
(
computePolarity
, composePol
, nextPolarity
, purgeNonvariant
, polFromOcc
) where
import Prelude hiding ( zip, zipWith )
import Control.Monad ( forM_, zipWithM )
import Data.Maybe
import Data.Semigroup ( Semigroup(..) )
import Agda.Syntax.Abstract.Name
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Datatypes (getNumberOfParameters)
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.SizedTypes
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Free
import Agda.TypeChecking.Positivity.Occurrence
import Agda.Utils.List
import Agda.Utils.ListInf qualified as ListInf
import Agda.Utils.Maybe ( whenNothingM )
import Agda.Utils.Monad
import Agda.Syntax.Common.Pretty ( prettyShow )
import Agda.Utils.Singleton
import Agda.Utils.Size
import Agda.Utils.Zip
import Agda.Utils.Impossible
(/\) :: Polarity -> Polarity -> Polarity
Polarity
Nonvariant /\ :: Polarity -> Polarity -> Polarity
/\ Polarity
b = Polarity
b
Polarity
a /\ Polarity
Nonvariant = Polarity
a
Polarity
a /\ Polarity
b | Polarity
a Polarity -> Polarity -> Bool
forall a. Eq a => a -> a -> Bool
== Polarity
b = Polarity
a
| Bool
otherwise = Polarity
Invariant
neg :: Polarity -> Polarity
neg :: Polarity -> Polarity
neg Polarity
Covariant = Polarity
Contravariant
neg Polarity
Contravariant = Polarity
Covariant
neg Polarity
Invariant = Polarity
Invariant
neg Polarity
Nonvariant = Polarity
Nonvariant
composePol :: Polarity -> Polarity -> Polarity
composePol :: Polarity -> Polarity -> Polarity
composePol Polarity
Nonvariant Polarity
_ = Polarity
Nonvariant
composePol Polarity
_ Polarity
Nonvariant = Polarity
Nonvariant
composePol Polarity
Invariant Polarity
_ = Polarity
Invariant
composePol Polarity
Covariant Polarity
x = Polarity
x
composePol Polarity
Contravariant Polarity
x = Polarity -> Polarity
neg Polarity
x
polFromOcc :: Occurrence -> Polarity
polFromOcc :: Occurrence -> Polarity
polFromOcc = \case
Occurrence
GuardPos -> Polarity
Covariant
Occurrence
StrictPos -> Polarity
Covariant
Occurrence
JustPos -> Polarity
Covariant
Occurrence
JustNeg -> Polarity
Contravariant
Occurrence
Mixed -> Polarity
Invariant
Occurrence
Unused -> Polarity
Nonvariant
nextPolarity :: [Polarity] -> (Polarity, [Polarity])
nextPolarity :: [Polarity] -> (Polarity, [Polarity])
nextPolarity [] = (Polarity
Invariant, [])
nextPolarity (Polarity
p : [Polarity]
ps) = (Polarity
p, [Polarity]
ps)
purgeNonvariant :: [Polarity] -> [Polarity]
purgeNonvariant :: [Polarity] -> [Polarity]
purgeNonvariant = (Polarity -> Polarity) -> [Polarity] -> [Polarity]
forall a b. (a -> b) -> [a] -> [b]
map (\ Polarity
p -> if Polarity
p Polarity -> Polarity -> Bool
forall a. Eq a => a -> a -> Bool
== Polarity
Nonvariant then Polarity
Covariant else Polarity
p)
polarityFromPositivity
:: (HasConstInfo m, MonadTCEnv m, MonadTCState m, MonadDebug m)
=> QName -> m ()
polarityFromPositivity :: forall (m :: * -> *).
(HasConstInfo m, MonadTCEnv m, MonadTCState m, MonadDebug m) =>
QName -> m ()
polarityFromPositivity QName
x = QName -> (Definition -> m ()) -> m ()
forall (m :: * -> *) a.
(MonadTCEnv m, HasConstInfo m) =>
QName -> (Definition -> m a) -> m a
inConcreteOrAbstractMode QName
x ((Definition -> m ()) -> m ()) -> (Definition -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ Definition
def -> do
let npars :: Int
npars = Definition -> Int
droppedPars Definition
def
let pol0 :: [Polarity]
pol0 = Int -> Polarity -> [Polarity]
forall a. Int -> a -> [a]
replicate Int
npars Polarity
Nonvariant [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ (Occurrence -> Polarity) -> [Occurrence] -> [Polarity]
forall a b. (a -> b) -> [a] -> [b]
map Occurrence -> Polarity
polFromOcc (Definition -> [Occurrence]
defArgOccurrences Definition
def)
[Char] -> Int -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> [Char] -> m ()
reportSLn [Char]
"tc.polarity.set" Int
15 ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$
[Char]
"Polarity of " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
x [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" from positivity: " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Polarity] -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow [Polarity]
pol0
QName -> [Polarity] -> m ()
forall (m :: * -> *).
(MonadTCState m, MonadDebug m) =>
QName -> [Polarity] -> m ()
setPolarity QName
x ([Polarity] -> m ()) -> [Polarity] -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> [Polarity] -> [Polarity]
forall a. Int -> [a] -> [a]
drop Int
npars [Polarity]
pol0
computePolarity
:: ( HasOptions m, HasConstInfo m, HasBuiltins m
, MonadTCEnv m, MonadTCState m, MonadReduce m, MonadAddContext m, MonadTCError m
, MonadDebug m, MonadPretty m )
=> [QName] -> m ()
computePolarity :: forall (m :: * -> *).
(HasOptions m, HasConstInfo m, HasBuiltins m, MonadTCEnv m,
MonadTCState m, MonadReduce m, MonadAddContext m, MonadTCError m,
MonadDebug m, MonadPretty m) =>
[QName] -> m ()
computePolarity [QName]
xs = do
Bool -> m () -> m ()
forall b (m :: * -> *). (IsBool b, Monad m) => b -> m () -> m ()
when ([QName] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [QName]
xs Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
2) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ (QName -> m ()) -> [QName] -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ QName -> m ()
forall (m :: * -> *).
(HasConstInfo m, MonadTCEnv m, MonadTCState m, MonadDebug m) =>
QName -> m ()
polarityFromPositivity [QName]
xs
[QName] -> (QName -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [QName]
xs ((QName -> m ()) -> m ()) -> (QName -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ QName
x -> QName -> (Definition -> m ()) -> m ()
forall (m :: * -> *) a.
(MonadTCEnv m, HasConstInfo m) =>
QName -> (Definition -> m a) -> m a
inConcreteOrAbstractMode QName
x ((Definition -> m ()) -> m ()) -> (Definition -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \ Definition
def -> do
[Char] -> Int -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> [Char] -> m ()
reportSLn [Char]
"tc.polarity.set" Int
25 ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$ [Char]
"Refining polarity of " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
x
let npars :: Int
npars = Definition -> Int
droppedPars Definition
def
let pol0 :: [Polarity]
pol0 = Int -> Polarity -> [Polarity]
forall a. Int -> a -> [a]
replicate Int
npars Polarity
Nonvariant [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ (Occurrence -> Polarity) -> [Occurrence] -> [Polarity]
forall a b. (a -> b) -> [a] -> [b]
map Occurrence -> Polarity
polFromOcc (Definition -> [Occurrence]
defArgOccurrences Definition
def)
[Char] -> Int -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> [Char] -> m ()
reportSLn [Char]
"tc.polarity.set" Int
15 ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$
[Char]
"Polarity of " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ QName -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow QName
x [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" from positivity: " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Polarity] -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow [Polarity]
pol0
pol1 <- QName -> [Polarity] -> m [Polarity]
forall (m :: * -> *).
(HasOptions m, HasConstInfo m, HasBuiltins m, ReadTCState m,
MonadTCEnv m, MonadTCState m, MonadReduce m, MonadAddContext m,
MonadTCError m, MonadDebug m, MonadPretty m) =>
QName -> [Polarity] -> m [Polarity]
sizePolarity QName
x [Polarity]
pol0
let t = Definition -> Type
defType Definition
def
reportSDoc "tc.polarity.set" 15 $
"Refining polarity with type " <+> prettyTCM t
reportSDoc "tc.polarity.set" 60 $
"Refining polarity with type (raw): " <+> (text .show) t
pol <- dependentPolarity t (enablePhantomTypes (theDef def) pol1) pol1
reportSLn "tc.polarity.set" 10 $ "Polarity of " ++ prettyShow x ++ ": " ++ prettyShow pol
setPolarity x $ drop npars pol
enablePhantomTypes :: Defn -> [Polarity] -> [Polarity]
enablePhantomTypes :: Defn -> [Polarity] -> [Polarity]
enablePhantomTypes Defn
def [Polarity]
pol = case Defn
def of
Datatype{ dataPars :: Defn -> Int
dataPars = Int
np } -> Int -> [Polarity]
enable Int
np
Record { recPars :: Defn -> Int
recPars = Int
np } -> Int -> [Polarity]
enable Int
np
Defn
_ -> [Polarity]
pol
where enable :: Int -> [Polarity]
enable Int
np = let ([Polarity]
pars, [Polarity]
rest) = Int -> [Polarity] -> ([Polarity], [Polarity])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
np [Polarity]
pol
in [Polarity] -> [Polarity]
purgeNonvariant [Polarity]
pars [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ [Polarity]
rest
dependentPolarity
:: (HasOptions m, HasBuiltins m, MonadReduce m, MonadAddContext m, MonadDebug m)
=> Type -> [Polarity] -> [Polarity] -> m [Polarity]
dependentPolarity :: forall (m :: * -> *).
(HasOptions m, HasBuiltins m, MonadReduce m, MonadAddContext m,
MonadDebug m) =>
Type -> [Polarity] -> [Polarity] -> m [Polarity]
dependentPolarity Type
t [Polarity]
_ [] = [Polarity] -> m [Polarity]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return []
dependentPolarity Type
t [] (Polarity
_ : [Polarity]
_) = m [Polarity]
forall a. HasCallStack => a
__IMPOSSIBLE__
dependentPolarity Type
t (Polarity
q:[Polarity]
qs) pols :: [Polarity]
pols@(Polarity
p:[Polarity]
ps) = do
t <- Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Term -> m Term) -> Term -> m Term
forall a b. (a -> b) -> a -> b
$ Type -> Term
forall t a. Type'' t a -> a
unEl Type
t
reportSDoc "tc.polarity.dep" 20 $ "dependentPolarity t = " <+> prettyTCM t
reportSDoc "tc.polarity.dep" 70 $ "dependentPolarity t = " <+> (text . show) t
case t of
Pi Dom Type
dom Abs Type
b -> do
ps <- Dom Type -> Abs Type -> (Type -> m [Polarity]) -> m [Polarity]
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstraction Dom Type
dom Abs Type
b ((Type -> m [Polarity]) -> m [Polarity])
-> (Type -> m [Polarity]) -> m [Polarity]
forall a b. (a -> b) -> a -> b
$ \ Type
c -> Type -> [Polarity] -> [Polarity] -> m [Polarity]
forall (m :: * -> *).
(HasOptions m, HasBuiltins m, MonadReduce m, MonadAddContext m,
MonadDebug m) =>
Type -> [Polarity] -> [Polarity] -> m [Polarity]
dependentPolarity Type
c [Polarity]
qs [Polarity]
ps
let fallback = m Bool -> m Polarity -> m Polarity -> m Polarity
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Maybe BoundedSize -> Bool
forall a. Maybe a -> Bool
isJust (Maybe BoundedSize -> Bool) -> m (Maybe BoundedSize) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
Type -> m (Maybe BoundedSize)
isSizeType (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
dom)) (Polarity -> m Polarity
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
p) (Polarity -> m Polarity
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
q)
p <- case b of
Abs{} | Polarity
p Polarity -> Polarity -> Bool
forall a. Eq a => a -> a -> Bool
/= Polarity
Invariant ->
m Bool -> m Polarity -> m Polarity -> m Polarity
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Int -> Type -> [Polarity] -> m Bool
forall (m :: * -> *).
MonadReduce m =>
Int -> Type -> [Polarity] -> m Bool
relevantInIgnoringNonvariant Int
0 (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b) [Polarity]
ps)
(Polarity -> m Polarity
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Invariant)
m Polarity
fallback
Abs Type
_ -> m Polarity
fallback
return $ p : ps
Term
_ -> [Polarity] -> m [Polarity]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return [Polarity]
pols
relevantInIgnoringNonvariant :: MonadReduce m => Nat -> Type -> [Polarity] -> m Bool
relevantInIgnoringNonvariant :: forall (m :: * -> *).
MonadReduce m =>
Int -> Type -> [Polarity] -> m Bool
relevantInIgnoringNonvariant Int
i Type
t [] = Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Int
i Int -> Type -> Bool
forall t. Free t => Int -> t -> Bool
`relevantInIgnoringSortAnn` Type
t
relevantInIgnoringNonvariant Int
i Type
t (Polarity
p:[Polarity]
ps) =
Type
-> (Type -> m Bool) -> (Dom Type -> Abs Type -> m Bool) -> m Bool
forall (m :: * -> *) a.
MonadReduce m =>
Type -> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPiType Type
t
(\ Type
t -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Int
i Int -> Type -> Bool
forall t. Free t => Int -> t -> Bool
`relevantInIgnoringSortAnn` Type
t) ((Dom Type -> Abs Type -> m Bool) -> m Bool)
-> (Dom Type -> Abs Type -> m Bool) -> m Bool
forall a b. (a -> b) -> a -> b
$
\ Dom Type
a Abs Type
b ->
if Polarity
p Polarity -> Polarity -> Bool
forall a. Eq a => a -> a -> Bool
/= Polarity
Nonvariant Bool -> Bool -> Bool
&& Int
i Int -> Dom Type -> Bool
forall t. Free t => Int -> t -> Bool
`relevantInIgnoringSortAnn` Dom Type
a
then Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
else Int -> Type -> [Polarity] -> m Bool
forall (m :: * -> *).
MonadReduce m =>
Int -> Type -> [Polarity] -> m Bool
relevantInIgnoringNonvariant (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b) [Polarity]
ps
sizePolarity
:: forall m .
( HasOptions m, HasConstInfo m, HasBuiltins m, ReadTCState m
, MonadTCEnv m, MonadTCState m, MonadReduce m, MonadAddContext m, MonadTCError m
, MonadDebug m, MonadPretty m )
=> QName -> [Polarity] -> m [Polarity]
sizePolarity :: forall (m :: * -> *).
(HasOptions m, HasConstInfo m, HasBuiltins m, ReadTCState m,
MonadTCEnv m, MonadTCState m, MonadReduce m, MonadAddContext m,
MonadTCError m, MonadDebug m, MonadPretty m) =>
QName -> [Polarity] -> m [Polarity]
sizePolarity QName
d [Polarity]
pol0 = do
let exit :: m [Polarity]
exit = [Polarity] -> m [Polarity]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return [Polarity]
pol0
m Bool -> m [Polarity] -> m [Polarity] -> m [Polarity]
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM m Bool
forall (m :: * -> *). HasOptions m => m Bool
sizedTypesOption m [Polarity]
exit (m [Polarity] -> m [Polarity]) -> m [Polarity] -> m [Polarity]
forall a b. (a -> b) -> a -> b
$ do
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
case theDef def of
Datatype{ dataPars :: Defn -> Int
dataPars = Int
np, dataCons :: Defn -> [QName]
dataCons = [QName]
cons } -> do
let TelV Tele (Dom Type)
tel Type
_ = Type -> TelV Type
telView' (Type -> TelV Type) -> Type -> TelV Type
forall a b. (a -> b) -> a -> b
$ Definition -> Type
defType Definition
def
([Dom ([Char], Type)]
parTel, [Dom ([Char], Type)]
ixTel) = Int
-> [Dom ([Char], Type)]
-> ([Dom ([Char], Type)], [Dom ([Char], Type)])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
np ([Dom ([Char], Type)]
-> ([Dom ([Char], Type)], [Dom ([Char], Type)]))
-> [Dom ([Char], Type)]
-> ([Dom ([Char], Type)], [Dom ([Char], Type)])
forall a b. (a -> b) -> a -> b
$ Tele (Dom Type) -> [Dom ([Char], Type)]
forall t. Tele (Dom t) -> [Dom ([Char], t)]
telToList Tele (Dom Type)
tel
case [Dom ([Char], Type)]
ixTel of
[] -> m [Polarity]
exit
Dom{unDom :: forall t e. Dom' t e -> e
unDom = ([Char]
_,Type
a)} : [Dom ([Char], Type)]
_ -> m Bool -> m [Polarity] -> m [Polarity] -> m [Polarity]
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM ((Maybe BoundedSize -> Maybe BoundedSize -> Bool
forall a. Eq a => a -> a -> Bool
/= BoundedSize -> Maybe BoundedSize
forall a. a -> Maybe a
Just BoundedSize
BoundedNo) (Maybe BoundedSize -> Bool) -> m (Maybe BoundedSize) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
Type -> m (Maybe BoundedSize)
isSizeType Type
a) m [Polarity]
exit (m [Polarity] -> m [Polarity]) -> m [Polarity] -> m [Polarity]
forall a b. (a -> b) -> a -> b
$ do
let pol :: [Polarity]
pol = Int -> [Polarity] -> [Polarity]
forall a. Int -> [a] -> [a]
take Int
np [Polarity]
pol0
polCo :: [Polarity]
polCo = [Polarity]
pol [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ [Polarity
Covariant]
polIn :: [Polarity]
polIn = [Polarity]
pol [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ [Polarity
Invariant]
QName -> [Polarity] -> m ()
forall (m :: * -> *).
(MonadTCState m, MonadDebug m) =>
QName -> [Polarity] -> m ()
setPolarity QName
d ([Polarity] -> m ()) -> [Polarity] -> m ()
forall a b. (a -> b) -> a -> b
$ [Polarity]
polCo
let check :: QName -> m Bool
check :: QName -> m Bool
check QName
c = do
t <- Definition -> Type
defType (Definition -> Type) -> m Definition -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
c
addContext (telFromList parTel) $ do
let pars = (Int -> Arg Term) -> [Int] -> [Arg Term]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Arg Term
forall a. a -> Arg a
defaultArg (Term -> Arg Term) -> (Int -> Term) -> Int -> Arg Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Term
var) ([Int] -> [Arg Term]) -> [Int] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
np
TelV conTel target <- telView =<< (t `piApplyM` pars)
loop target conTel
where
loop :: Type -> Telescope -> m Bool
loop :: Type -> Tele (Dom Type) -> m Bool
loop Type
_ Tele (Dom Type)
EmptyTel = do
[Char] -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.polarity.size" Int
15 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
TCMT IO Doc
"constructor" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => QName -> m Doc
prettyTCM QName
c TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"fails size polarity check"
Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
loop Type
target (ExtendTel Dom Type
dom Abs (Tele (Dom Type))
tel) = do
isSz <- Dom Type -> m (Maybe BoundedSize)
forall a (m :: * -> *).
(IsSizeType a, HasOptions m, HasBuiltins m) =>
a -> m (Maybe BoundedSize)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
Dom Type -> m (Maybe BoundedSize)
isSizeType Dom Type
dom
underAbstraction dom tel $ \ Tele (Dom Type)
tel -> do
let continue :: m Bool
continue = Type -> Tele (Dom Type) -> m Bool
loop Type
target Tele (Dom Type)
tel
if Maybe BoundedSize
isSz Maybe BoundedSize -> Maybe BoundedSize -> Bool
forall a. Eq a => a -> a -> Bool
/= BoundedSize -> Maybe BoundedSize
forall a. a -> Maybe a
Just BoundedSize
BoundedNo then m Bool
continue else do
let sizeArg :: Int
sizeArg = Tele (Dom Type) -> Int
forall a. Sized a => a -> Int
size Tele (Dom Type)
tel
isLin <- Tele (Dom Type) -> m Bool -> m Bool
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Tele (Dom Type) -> m a -> m a
addContext Tele (Dom Type)
tel (m Bool -> m Bool) -> m Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ QName -> Int -> Type -> m Bool
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m, MonadDebug m, MonadPretty m,
MonadTCError m) =>
QName -> Int -> Type -> m Bool
checkSizeIndex QName
d Int
sizeArg Type
target
if not isLin then continue else do
pols <- zipWithM polarity [0..] $ map (snd . unDom) $ telToList tel
reportSDoc "tc.polarity.size" 25 $
text $ "to pass size polarity check, the following polarities need all to be covariant: " ++ prettyShow pols
if any (`notElem` [Nonvariant, Covariant]) pols then continue else do
reportSDoc "tc.polarity.size" 15 $
"constructor" <+> prettyTCM c <+> "passes size polarity check"
return True
m Bool -> m [Polarity] -> m [Polarity] -> m [Polarity]
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM ([m Bool] -> m Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
andM ([m Bool] -> m Bool) -> [m Bool] -> m Bool
forall a b. (a -> b) -> a -> b
$ (QName -> m Bool) -> [QName] -> [m Bool]
forall a b. (a -> b) -> [a] -> [b]
map QName -> m Bool
check [QName]
cons)
([Polarity] -> m [Polarity]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return [Polarity]
polIn)
(m [Polarity] -> m [Polarity]) -> m [Polarity] -> m [Polarity]
forall a b. (a -> b) -> a -> b
$ do
QName -> ([Occurrence] -> [Occurrence]) -> m ()
forall (m :: * -> *).
MonadTCState m =>
QName -> ([Occurrence] -> [Occurrence]) -> m ()
modifyArgOccurrences QName
d (([Occurrence] -> [Occurrence]) -> m ())
-> ([Occurrence] -> [Occurrence]) -> m ()
forall a b. (a -> b) -> a -> b
$ \ [Occurrence]
occ -> Int -> [Occurrence] -> [Occurrence]
forall a. Int -> [a] -> [a]
take Int
np [Occurrence]
occ [Occurrence] -> [Occurrence] -> [Occurrence]
forall a. [a] -> [a] -> [a]
++ [Occurrence
JustPos]
[Polarity] -> m [Polarity]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return [Polarity]
polCo
Defn
_ -> m [Polarity]
exit
checkSizeIndex
:: (HasConstInfo m, ReadTCState m, MonadDebug m, MonadPretty m, MonadTCError m)
=> QName -> Nat -> Type -> m Bool
checkSizeIndex :: forall (m :: * -> *).
(HasConstInfo m, ReadTCState m, MonadDebug m, MonadPretty m,
MonadTCError m) =>
QName -> Int -> Type -> m Bool
checkSizeIndex QName
d Int
i Type
a = do
[Char] -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Int -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.polarity.size" Int
15 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *) a. ReadTCState m => m a -> m a
withShowAllArguments (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
[ TCMT IO Doc
"checking that constructor target type " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a
, TCMT IO Doc
" is data type " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => QName -> m Doc
prettyTCM QName
d
, TCMT IO Doc
" and has size index (successor(s) of) " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (Int -> Term
var Int
i)
]
case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
Def QName
d0 [Elim]
es -> do
m (Maybe QName) -> m () -> m ()
forall (m :: * -> *) a. Monad m => m (Maybe a) -> m () -> m ()
whenNothingM (QName -> QName -> m (Maybe QName)
forall (m :: * -> *).
HasConstInfo m =>
QName -> QName -> m (Maybe QName)
sameDef QName
d QName
d0) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
np <- Int -> Maybe Int -> Int
forall a. a -> Maybe a -> a
fromMaybe Int
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Int -> Int) -> m (Maybe Int) -> m Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe Int)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Int)
getNumberOfParameters QName
d0
let (pars, Apply ix : ixs) = splitAt np es
s <- deepSizeView $ unArg ix
case s of
DSizeVar (ProjectedVar Int
j []) Int
_ | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j
-> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Int -> [Elim] -> Bool
forall t. Free t => Int -> t -> Bool
freeIn Int
i ([Elim]
pars [Elim] -> [Elim] -> [Elim]
forall a. [a] -> [a] -> [a]
++ [Elim]
ixs)
DeepSizeView
_ -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Term
_ -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
polarity
:: (HasPolarity a, HasConstInfo m, MonadReduce m)
=> Nat -> a -> m Polarity
polarity :: forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> a -> m Polarity
polarity Int
i a
x = LeastPolarity m -> m Polarity
forall (m :: * -> *). LeastPolarity m -> m Polarity
getLeastPolarity (LeastPolarity m -> m Polarity) -> LeastPolarity m -> m Polarity
forall a b. (a -> b) -> a -> b
$ Int -> Polarity -> a -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
polarity' Int
i Polarity
Covariant a
x
newtype LeastPolarity m = LeastPolarity { forall (m :: * -> *). LeastPolarity m -> m Polarity
getLeastPolarity :: m Polarity}
instance Monad m => Singleton Polarity (LeastPolarity m) where
singleton :: Polarity -> LeastPolarity m
singleton = m Polarity -> LeastPolarity m
forall (m :: * -> *). m Polarity -> LeastPolarity m
LeastPolarity (m Polarity -> LeastPolarity m)
-> (Polarity -> m Polarity) -> Polarity -> LeastPolarity m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Polarity -> m Polarity
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
instance Monad m => Semigroup (LeastPolarity m) where
LeastPolarity m Polarity
mp <> :: LeastPolarity m -> LeastPolarity m -> LeastPolarity m
<> LeastPolarity m Polarity
mq = m Polarity -> LeastPolarity m
forall (m :: * -> *). m Polarity -> LeastPolarity m
LeastPolarity (m Polarity -> LeastPolarity m) -> m Polarity -> LeastPolarity m
forall a b. (a -> b) -> a -> b
$ do
m Polarity
mp m Polarity -> (Polarity -> m Polarity) -> m Polarity
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Polarity
Invariant -> Polarity -> m Polarity
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Invariant
Polarity
Nonvariant -> m Polarity
mq
Polarity
p -> (Polarity
p Polarity -> Polarity -> Polarity
/\) (Polarity -> Polarity) -> m Polarity -> m Polarity
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m Polarity
mq
instance Monad m => Monoid (LeastPolarity m) where
mempty :: LeastPolarity m
mempty = Polarity -> LeastPolarity m
forall el coll. Singleton el coll => el -> coll
singleton Polarity
Nonvariant
mappend :: LeastPolarity m -> LeastPolarity m -> LeastPolarity m
mappend = LeastPolarity m -> LeastPolarity m -> LeastPolarity m
forall a. Semigroup a => a -> a -> a
(<>)
(>>==) :: Monad m => m a -> (a -> LeastPolarity m) -> LeastPolarity m
m a
m >>== :: forall (m :: * -> *) a.
Monad m =>
m a -> (a -> LeastPolarity m) -> LeastPolarity m
>>== a -> LeastPolarity m
k = m Polarity -> LeastPolarity m
forall (m :: * -> *). m Polarity -> LeastPolarity m
LeastPolarity (m Polarity -> LeastPolarity m) -> m Polarity -> LeastPolarity m
forall a b. (a -> b) -> a -> b
$ m a
m m a -> (a -> m Polarity) -> m Polarity
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= LeastPolarity m -> m Polarity
forall (m :: * -> *). LeastPolarity m -> m Polarity
getLeastPolarity (LeastPolarity m -> m Polarity)
-> (a -> LeastPolarity m) -> a -> m Polarity
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> LeastPolarity m
k
class HasPolarity a where
polarity'
:: (HasConstInfo m, MonadReduce m)
=> Nat -> Polarity -> a -> LeastPolarity m
default polarity'
:: (HasConstInfo m, MonadReduce m, HasPolarity b, Foldable t, t b ~ a)
=> Nat -> Polarity -> a -> LeastPolarity m
polarity' Int
i = (b -> LeastPolarity m) -> a -> LeastPolarity m
(b -> LeastPolarity m) -> t b -> LeastPolarity m
forall m a. Monoid m => (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap ((b -> LeastPolarity m) -> a -> LeastPolarity m)
-> (Polarity -> b -> LeastPolarity m)
-> Polarity
-> a
-> LeastPolarity m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Polarity -> b -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> b -> LeastPolarity m
polarity' Int
i
instance HasPolarity a => HasPolarity [a]
instance HasPolarity a => HasPolarity (Arg a)
instance HasPolarity a => HasPolarity (Dom a)
instance HasPolarity a => HasPolarity (Elim' a)
instance HasPolarity a => HasPolarity (Level' a)
instance HasPolarity a => HasPolarity (PlusLevel' a)
instance HasPolarity a => HasPolarity (Type'' t a)
instance (HasPolarity a, HasPolarity b) => HasPolarity (a, b) where
polarity' :: forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> (a, b) -> LeastPolarity m
polarity' Int
i Polarity
p (a
x, b
y) = Int -> Polarity -> a -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
polarity' Int
i Polarity
p a
x LeastPolarity m -> LeastPolarity m -> LeastPolarity m
forall a. Semigroup a => a -> a -> a
<> Int -> Polarity -> b -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> b -> LeastPolarity m
polarity' Int
i Polarity
p b
y
instance HasPolarity a => HasPolarity (Abs a) where
polarity' :: forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Abs a -> LeastPolarity m
polarity' Int
i Polarity
p (Abs [Char]
_ a
b) = Int -> Polarity -> a -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
polarity' (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Polarity
p a
b
polarity' Int
i Polarity
p (NoAbs [Char]
_ a
v) = Int -> Polarity -> a -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
polarity' Int
i Polarity
p a
v
instance HasPolarity Term where
polarity' :: forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Term -> LeastPolarity m
polarity' Int
i Polarity
p Term
v = Term -> m Term
forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate Term
v m Term -> (Term -> LeastPolarity m) -> LeastPolarity m
forall (m :: * -> *) a.
Monad m =>
m a -> (a -> LeastPolarity m) -> LeastPolarity m
>>== \case
Var Int
n [Elim]
ts
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i -> Polarity -> LeastPolarity m
forall el coll. Singleton el coll => el -> coll
singleton Polarity
p LeastPolarity m -> LeastPolarity m -> LeastPolarity m
forall a. Semigroup a => a -> a -> a
<> Int -> Polarity -> [Elim] -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> [Elim] -> LeastPolarity m
polarity' Int
i Polarity
Invariant [Elim]
ts
| Bool
otherwise -> Int -> Polarity -> [Elim] -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> [Elim] -> LeastPolarity m
polarity' Int
i Polarity
Invariant [Elim]
ts
Lam ArgInfo
_ Abs Term
t -> Int -> Polarity -> Abs Term -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Abs Term -> LeastPolarity m
polarity' Int
i Polarity
p Abs Term
t
Lit Literal
_ -> LeastPolarity m
forall a. Monoid a => a
mempty
Level Level
l -> Int -> Polarity -> Level -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Level -> LeastPolarity m
polarity' Int
i Polarity
p Level
l
Def QName
x [Elim]
ts -> QName -> m [Polarity]
forall (m :: * -> *). HasConstInfo m => QName -> m [Polarity]
getPolarity QName
x m [Polarity] -> ([Polarity] -> LeastPolarity m) -> LeastPolarity m
forall (m :: * -> *) a.
Monad m =>
m a -> (a -> LeastPolarity m) -> LeastPolarity m
>>== \ [Polarity]
pols ->
let ps :: ListInf Polarity
ps = [Polarity] -> Polarity -> ListInf Polarity
forall a. [a] -> a -> ListInf a
ListInf.pad ((Polarity -> Polarity) -> [Polarity] -> [Polarity]
forall a b. (a -> b) -> [a] -> [b]
map (Polarity -> Polarity -> Polarity
composePol Polarity
p) [Polarity]
pols) Polarity
Invariant
in [LeastPolarity m] -> LeastPolarity m
forall a. Monoid a => [a] -> a
mconcat ([LeastPolarity m] -> LeastPolarity m)
-> [LeastPolarity m] -> LeastPolarity m
forall a b. (a -> b) -> a -> b
$ (Polarity -> Elim -> LeastPolarity m)
-> ListInf Polarity -> [Elim] -> [LeastPolarity m]
forall a b c. (a -> b -> c) -> Infinite a -> [b] -> [c]
forall (f :: * -> *) (g :: * -> *) (h :: * -> *) a b c.
Zip f g h =>
(a -> b -> c) -> f a -> g b -> h c
zipWith (Int -> Polarity -> Elim -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Elim -> LeastPolarity m
polarity' Int
i) ListInf Polarity
ps [Elim]
ts
Con ConHead
_ ConInfo
_ [Elim]
ts -> Int -> Polarity -> [Elim] -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> [Elim] -> LeastPolarity m
polarity' Int
i Polarity
p [Elim]
ts
Pi Dom Type
a Abs Type
b -> Int -> Polarity -> Dom Type -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Dom Type -> LeastPolarity m
polarity' Int
i (Polarity -> Polarity
neg Polarity
p) Dom Type
a LeastPolarity m -> LeastPolarity m -> LeastPolarity m
forall a. Semigroup a => a -> a -> a
<> Int -> Polarity -> Abs Type -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Abs Type -> LeastPolarity m
polarity' Int
i Polarity
p Abs Type
b
Sort Sort
s -> LeastPolarity m
forall a. Monoid a => a
mempty
MetaV MetaId
_ [Elim]
ts -> Int -> Polarity -> [Elim] -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> [Elim] -> LeastPolarity m
polarity' Int
i Polarity
Invariant [Elim]
ts
DontCare Term
t -> Int -> Polarity -> Term -> LeastPolarity m
forall a (m :: * -> *).
(HasPolarity a, HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> a -> LeastPolarity m
forall (m :: * -> *).
(HasConstInfo m, MonadReduce m) =>
Int -> Polarity -> Term -> LeastPolarity m
polarity' Int
i Polarity
p Term
t
Dummy{} -> LeastPolarity m
forall a. Monoid a => a
mempty