Agda
Safe HaskellNone
LanguageHaskell2010

Agda.Utils.Semigroup

Description

Some semigroup instances used in several places

Synopsis

Documentation

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Instances should satisfy the following:

Associativity
x <> (y <> z) = (x <> y) <> z

You can alternatively define sconcat instead of (<>), in which case the laws are:

Unit
sconcat (pure x) = x
Multiplication
sconcat (join xss) = sconcat (fmap sconcat xss)

Since: base-4.9.0.0

Minimal complete definition

(<>) | sconcat

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

Examples

Expand
>>> [1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>> Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>> putStr "Hello, " <> putStrLn "World!"
Hello, World!

Instances

Instances details
Semigroup Doc Source # 
Instance details

Defined in Agda.Compiler.JS.Pretty

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup Comment Source # 
Instance details

Defined in Agda.Compiler.JS.Syntax

Semigroup HsCompileState Source # 
Instance details

Defined in Agda.Compiler.MAlonzo.Misc

Semigroup Occurs Source # 
Instance details

Defined in Agda.Compiler.Treeless.Subst

Semigroup SeqArg Source # 
Instance details

Defined in Agda.Compiler.Treeless.Subst

Semigroup UnderLambda Source # 
Instance details

Defined in Agda.Compiler.Treeless.Subst

Semigroup PositionMap Source # 
Instance details

Defined in Agda.Interaction.Highlighting.Precise

Semigroup OptionsPragma Source # 
Instance details

Defined in Agda.Interaction.Library.Base

Semigroup Catchall Source #

Composition is left-biased, taking the left Range if both have one.

Instance details

Defined in Agda.Syntax.Common

Semigroup CoverageCheck Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup ExpandedEllipsis Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup FreeVariables Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup Hiding Source #

Hiding is an idempotent partial monoid, with unit NotHidden. Instance and NotHidden are incompatible.

Instance details

Defined in Agda.Syntax.Common

Semigroup IsAbstract Source #

Semigroup computes if any of several is an AbstractDef.

Instance details

Defined in Agda.Syntax.Common

Semigroup IsMain Source #

Conjunctive semigroup (NotMain is absorbing).

Instance details

Defined in Agda.Syntax.Common

Semigroup JointOpacity Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup OriginIrrelevant Source #

Right-biased composition, because the left relevance acts as context, and the right one as occurrence.

Instance details

Defined in Agda.Syntax.Common

Semigroup OriginRelevant Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup OriginShapeIrrelevant Source #

Right-biased composition, because the left relevance acts as context, and the right one as occurrence.

Instance details

Defined in Agda.Syntax.Common

Semigroup Overlappable Source #

Just for the Hiding instance. Should never combine different overlapping.

Instance details

Defined in Agda.Syntax.Common

Semigroup PositivityCheck Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup Q0Origin Source #

Right-biased composition, because the left quantity acts as context, and the right one as occurrence.

Instance details

Defined in Agda.Syntax.Common

Semigroup Q1Origin Source #

Right-biased composition, because the left quantity acts as context, and the right one as occurrence.

Instance details

Defined in Agda.Syntax.Common

Semigroup QωOrigin Source #

Right-biased composition, because the left quantity acts as context, and the right one as occurrence.

Instance details

Defined in Agda.Syntax.Common

Semigroup Aspect Source #

NameKind in Name can get more precise.

Instance details

Defined in Agda.Syntax.Common.Aspect

Semigroup Aspects Source # 
Instance details

Defined in Agda.Interaction.Highlighting.Precise

Semigroup DefinitionSite Source # 
Instance details

Defined in Agda.Interaction.Highlighting.Precise

Semigroup NameKind Source #

Some NameKinds are more informative than others.

Instance details

Defined in Agda.Syntax.Common.Aspect

Semigroup TokenBased Source # 
Instance details

Defined in Agda.Interaction.Highlighting.Precise

Semigroup MutualChecks Source # 
Instance details

Defined in Agda.Syntax.Concrete.Definitions.Types

Semigroup PatInfo Source # 
Instance details

Defined in Agda.Syntax.Info

Semigroup NameMapEntry Source #

Invariant: the KindOfName components should be equal whenever we have to concrete renderings of an abstract name.

Instance details

Defined in Agda.Syntax.Scope.Base

Semigroup CallPath Source # 
Instance details

Defined in Agda.Termination.Monad

Semigroup VarCounts Source # 
Instance details

Defined in Agda.TypeChecking.Free

Semigroup FlexRigMap Source # 
Instance details

Defined in Agda.TypeChecking.Free.Lazy

Semigroup MetaSet Source # 
Instance details

Defined in Agda.TypeChecking.Free.Lazy

Semigroup InstanceTable Source # 
Instance details

Defined in Agda.TypeChecking.Monad.Base

Semigroup Simplification Source # 
Instance details

Defined in Agda.TypeChecking.Monad.Base

Semigroup OnlyLazy Source # 
Instance details

Defined in Agda.TypeChecking.Patterns.Match

Semigroup OccurrencesBuilder Source #

The semigroup laws only hold up to flattening of Concat.

Instance details

Defined in Agda.TypeChecking.Positivity

Semigroup ClausesPostChecks Source # 
Instance details

Defined in Agda.TypeChecking.Rules.Def

Semigroup FlexChoice Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Semigroup LeftoverPatterns Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Semigroup UnifyOutput Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Unify.Types

Semigroup IntSet Source # 
Instance details

Defined in Agda.Utils.IntSet.Infinite

Semigroup MaxNat Source # 
Instance details

Defined in Agda.Utils.Monoid

Semigroup PartialOrdering Source #

Partial ordering forms a monoid under sequencing.

Instance details

Defined in Agda.Utils.PartialOrd

Semigroup CharString # 
Instance details

Defined in Data.ListLike.CharString

Semigroup CharStringLazy # 
Instance details

Defined in Data.ListLike.CharString

Semigroup Chars # 
Instance details

Defined in Data.ListLike.Chars

Methods

(<>) :: Chars -> Chars -> Chars #

sconcat :: NonEmpty Chars -> Chars #

stimes :: Integral b => b -> Chars -> Chars #

Semigroup Series # 
Instance details

Defined in Data.Aeson.Encoding.Internal

Semigroup Key # 
Instance details

Defined in Data.Aeson.Key

Methods

(<>) :: Key -> Key -> Key #

sconcat :: NonEmpty Key -> Key #

stimes :: Integral b => b -> Key -> Key #

Semigroup ByteArray #

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Semigroup Attribute # 
Instance details

Defined in Text.Blaze.Internal

Semigroup AttributeValue # 
Instance details

Defined in Text.Blaze.Internal

Semigroup ChoiceString # 
Instance details

Defined in Text.Blaze.Internal

Semigroup Builder # 
Instance details

Defined in Data.ByteString.Builder.Internal

Semigroup ByteString # 
Instance details

Defined in Data.ByteString.Internal.Type

Semigroup ByteString # 
Instance details

Defined in Data.ByteString.Lazy.Internal

Semigroup ShortByteString # 
Instance details

Defined in Data.ByteString.Short.Internal

Semigroup IntSet #

Since: containers-0.5.7

Instance details

Defined in Data.IntSet.Internal

Semigroup Unit # 
Instance details

Defined in Control.DeepSeq

Methods

(<>) :: Unit -> Unit -> Unit #

sconcat :: NonEmpty Unit -> Unit #

stimes :: Integral b => b -> Unit -> Unit #

Semigroup Void #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup All #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup Ordering #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Semigroup NEIntSet #

Left-biased union

Instance details

Defined in Data.IntSet.NonEmpty.Internal

Semigroup OsString # 
Instance details

Defined in System.OsString.Internal.Types

Semigroup PosixString # 
Instance details

Defined in System.OsString.Internal.Types

Semigroup WindowsString # 
Instance details

Defined in System.OsString.Internal.Types

Semigroup Doc # 
Instance details

Defined in Text.PrettyPrint.HughesPJ

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup SetTestInfo # 
Instance details

Defined in Text.Regex.TDFA.CorePattern

Semigroup Builder # 
Instance details

Defined in Data.Text.Internal.Builder

Semigroup StrictTextBuilder #

Concatenation of StrictBuilder is right-biased: the right builder will be run first. This allows a builder to run tail-recursively when it was accumulated left-to-right.

Instance details

Defined in Data.Text.Internal.StrictBuilder

Semigroup ShortText # 
Instance details

Defined in Data.Text.Short.Internal

Semigroup CalendarDiffDays #

Additive

Instance details

Defined in Data.Time.Calendar.CalendarDiffDays

Semigroup CalendarDiffTime #

Additive

Instance details

Defined in Data.Time.LocalTime.Internal.CalendarDiffTime

Semigroup () #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup (DelayedMerge hl) Source # 
Instance details

Defined in Agda.Interaction.Highlighting.Precise

Semigroup (UnderAddition Cohesion) Source #

Cohesion forms a semigroup under addition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderAddition Modality) Source #

Pointwise addition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderAddition PolarityModality) Source #

ModalPolarity forms a semigroup under addition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderAddition Quantity) Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderAddition Relevance) Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition Cohesion) Source #

Cohesion forms a semigroup under composition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition Erased) Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition Modality) Source #

Pointwise composition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition PolarityModality) Source #

ModalPolarity forms a semigroup under composition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition Quantity) Source #

Composition of quantities (multiplication).

Quantity0 is dominant. Quantity1 is neutral.

Right-biased for origin.

Instance details

Defined in Agda.Syntax.Common

Semigroup (UnderComposition Relevance) Source #

Relevance forms a semigroup under composition.

Instance details

Defined in Agda.Syntax.Common

Semigroup (NotBlocked' t) Source #

ReallyNotBlocked is the unit. MissingClauses is dominant. StuckOn{} should be propagated, if tied, we take the left.

Instance details

Defined in Agda.Syntax.Internal.Blockers

Eq a => Semigroup (Range' a) Source # 
Instance details

Defined in Agda.Syntax.Position

Methods

(<>) :: Range' a -> Range' a -> Range' a #

sconcat :: NonEmpty (Range' a) -> Range' a #

stimes :: Integral b => b -> Range' a -> Range' a #

Semigroup (CallGraph cinfo) Source #

CallGraph is a monoid under union.

Instance details

Defined in Agda.Termination.CallGraph

Methods

(<>) :: CallGraph cinfo -> CallGraph cinfo -> CallGraph cinfo #

sconcat :: NonEmpty (CallGraph cinfo) -> CallGraph cinfo #

stimes :: Integral b => b -> CallGraph cinfo -> CallGraph cinfo #

Semigroup (CMSet cinfo) Source # 
Instance details

Defined in Agda.Termination.CallMatrix

Methods

(<>) :: CMSet cinfo -> CMSet cinfo -> CMSet cinfo #

sconcat :: NonEmpty (CMSet cinfo) -> CMSet cinfo #

stimes :: Integral b => b -> CMSet cinfo -> CMSet cinfo #

Semigroup m => Semigroup (TerM m) Source # 
Instance details

Defined in Agda.Termination.Monad

Methods

(<>) :: TerM m -> TerM m -> TerM m #

sconcat :: NonEmpty (TerM m) -> TerM m #

stimes :: Integral b => b -> TerM m -> TerM m #

Semigroup m => Semigroup (Case m) Source # 
Instance details

Defined in Agda.TypeChecking.CompiledClause

Methods

(<>) :: Case m -> Case m -> Case m #

sconcat :: NonEmpty (Case m) -> Case m #

stimes :: Integral b => b -> Case m -> Case m #

Semigroup c => Semigroup (WithArity c) Source # 
Instance details

Defined in Agda.TypeChecking.CompiledClause

Methods

(<>) :: WithArity c -> WithArity c -> WithArity c #

sconcat :: NonEmpty (WithArity c) -> WithArity c #

stimes :: Integral b => b -> WithArity c -> WithArity c #

Ord a => Semigroup (QueryResult a) Source # 
Instance details

Defined in Agda.TypeChecking.DiscrimTree

Ord a => Semigroup (DiscrimTree a) Source # 
Instance details

Defined in Agda.TypeChecking.DiscrimTree.Types

Semigroup a => Semigroup (VarMap' a) Source #

Proper monoid instance for VarMap rather than inheriting the broken one from IntMap. We combine two occurrences of a variable using mappend.

Instance details

Defined in Agda.TypeChecking.Free.Lazy

Methods

(<>) :: VarMap' a -> VarMap' a -> VarMap' a #

sconcat :: NonEmpty (VarMap' a) -> VarMap' a #

stimes :: Integral b => b -> VarMap' a -> VarMap' a #

Semigroup a => Semigroup (VarOcc' a) Source #

The default way of aggregating free variable info from subterms is by adding the variable occurrences. For instance, if we have a pair (t₁,t₂) then and t₁ has o₁ the occurrences of a variable x and t₂ has o₂ the occurrences of the same variable, then (t₁,t₂) has mappend o₁ o₂ occurrences of that variable.

From counting Quantity, we extrapolate this to FlexRig and Relevance: we care most about about StronglyRigid Relevant occurrences. E.g., if t₁ has a StronglyRigid occurrence and t₂ a Flexible occurrence, then (t₁,t₂) still has a StronglyRigid occurrence. Analogously, Relevant occurrences count most, as we wish e.g. to forbid relevant occurrences of variables that are declared to be irrelevant.

VarOcc forms a semiring, and this monoid is the addition of the semiring.

Instance details

Defined in Agda.TypeChecking.Free.Lazy

Methods

(<>) :: VarOcc' a -> VarOcc' a -> VarOcc' a #

sconcat :: NonEmpty (VarOcc' a) -> VarOcc' a #

stimes :: Integral b => b -> VarOcc' a -> VarOcc' a #

Semigroup (TCM Doc) Source #

This instance is more specific than a generic instance Semigroup a => Semigroup (TCM a).

Instance details

Defined in Agda.TypeChecking.Pretty

Methods

(<>) :: TCM Doc -> TCM Doc -> TCM Doc #

sconcat :: NonEmpty (TCM Doc) -> TCM Doc #

stimes :: Integral b => b -> TCM Doc -> TCM Doc #

Semigroup (Match a) Source # 
Instance details

Defined in Agda.TypeChecking.Patterns.Match

Methods

(<>) :: Match a -> Match a -> Match a #

sconcat :: NonEmpty (Match a) -> Match a #

stimes :: Integral b => b -> Match a -> Match a #

Ord a => Semigroup (Bag a) Source # 
Instance details

Defined in Agda.Utils.Bag

Methods

(<>) :: Bag a -> Bag a -> Bag a #

sconcat :: NonEmpty (Bag a) -> Bag a #

stimes :: Integral b => b -> Bag a -> Bag a #

PartialOrd a => Semigroup (Favorites a) Source #

Favorites forms a Monoid under empty and 'union.

Instance details

Defined in Agda.Utils.Favorites

Methods

(<>) :: Favorites a -> Favorites a -> Favorites a #

sconcat :: NonEmpty (Favorites a) -> Favorites a #

stimes :: Integral b => b -> Favorites a -> Favorites a #

Semigroup a => Semigroup (RangeMap a) Source #

Merges RangeMaps by inserting every "piece" of the smaller one into the larger one.

Instance details

Defined in Agda.Utils.RangeMap

Methods

(<>) :: RangeMap a -> RangeMap a -> RangeMap a #

sconcat :: NonEmpty (RangeMap a) -> RangeMap a #

stimes :: Integral b => b -> RangeMap a -> RangeMap a #

SmallSetElement a => Semigroup (SmallSet a) Source # 
Instance details

Defined in Agda.Utils.SmallSet

Methods

(<>) :: SmallSet a -> SmallSet a -> SmallSet a #

sconcat :: NonEmpty (SmallSet a) -> SmallSet a #

stimes :: Integral b => b -> SmallSet a -> SmallSet a #

Semigroup (KeyMap v) # 
Instance details

Defined in Data.Aeson.KeyMap

Methods

(<>) :: KeyMap v -> KeyMap v -> KeyMap v #

sconcat :: NonEmpty (KeyMap v) -> KeyMap v #

stimes :: Integral b => b -> KeyMap v -> KeyMap v #

Semigroup (IResult a) # 
Instance details

Defined in Data.Aeson.Types.Internal

Methods

(<>) :: IResult a -> IResult a -> IResult a #

sconcat :: NonEmpty (IResult a) -> IResult a #

stimes :: Integral b => b -> IResult a -> IResult a #

Semigroup (Parser a) # 
Instance details

Defined in Data.Aeson.Types.Internal

Methods

(<>) :: Parser a -> Parser a -> Parser a #

sconcat :: NonEmpty (Parser a) -> Parser a #

stimes :: Integral b => b -> Parser a -> Parser a #

Semigroup (Result a) # 
Instance details

Defined in Data.Aeson.Types.Internal

Methods

(<>) :: Result a -> Result a -> Result a #

sconcat :: NonEmpty (Result a) -> Result a #

stimes :: Integral b => b -> Result a -> Result a #

Semigroup a => Semigroup (Concurrently a) #

Only defined by async for base >= 4.9

Since: async-2.1.0

Instance details

Defined in Control.Concurrent.Async.Internal

Semigroup (FromMaybe b) # 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: FromMaybe b -> FromMaybe b -> FromMaybe b #

sconcat :: NonEmpty (FromMaybe b) -> FromMaybe b #

stimes :: Integral b0 => b0 -> FromMaybe b -> FromMaybe b #

Semigroup a => Semigroup (JoinWith a) # 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: JoinWith a -> JoinWith a -> JoinWith a #

sconcat :: NonEmpty (JoinWith a) -> JoinWith a #

stimes :: Integral b => b -> JoinWith a -> JoinWith a #

Semigroup (NonEmptyDList a) # 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: NonEmptyDList a -> NonEmptyDList a -> NonEmptyDList a #

sconcat :: NonEmpty (NonEmptyDList a) -> NonEmptyDList a #

stimes :: Integral b => b -> NonEmptyDList a -> NonEmptyDList a #

Semigroup (Comparison a) #

(<>) on comparisons combines results with (<>) @Ordering. Without newtypes this equals liftA2 (liftA2 (<>)).

(<>) :: Comparison a -> Comparison a -> Comparison a
Comparison cmp <> Comparison cmp' = Comparison a a' ->
  cmp a a' <> cmp a a'
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Equivalence a) #

(<>) on equivalences uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (liftA2 (&&)).

(<>) :: Equivalence a -> Equivalence a -> Equivalence a
Equivalence equiv <> Equivalence equiv' = Equivalence a b ->
  equiv a b && equiv' a b
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Predicate a) #

(<>) on predicates uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (&&).

(<>) :: Predicate a -> Predicate a -> Predicate a
Predicate pred <> Predicate pred' = Predicate a ->
  pred a && pred' a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Predicate a -> Predicate a -> Predicate a #

sconcat :: NonEmpty (Predicate a) -> Predicate a #

stimes :: Integral b => b -> Predicate a -> Predicate a #

Semigroup (First a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Ord a => Semigroup (Max a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Ord a => Semigroup (Min a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Monoid m => Semigroup (WrappedMonoid m) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup (PutM ()) # 
Instance details

Defined in Data.Binary.Put

Methods

(<>) :: PutM () -> PutM () -> PutM () #

sconcat :: NonEmpty (PutM ()) -> PutM () #

stimes :: Integral b => b -> PutM () -> PutM () #

Monoid a => Semigroup (MarkupM a) # 
Instance details

Defined in Text.Blaze.Internal

Methods

(<>) :: MarkupM a -> MarkupM a -> MarkupM a #

sconcat :: NonEmpty (MarkupM a) -> MarkupM a #

stimes :: Integral b => b -> MarkupM a -> MarkupM a #

Semigroup s => Semigroup (CI s) # 
Instance details

Defined in Data.CaseInsensitive.Internal

Methods

(<>) :: CI s -> CI s -> CI s #

sconcat :: NonEmpty (CI s) -> CI s #

stimes :: Integral b => b -> CI s -> CI s #

Num a => Semigroup (AlphaColour a) #

AlphaColour forms a monoid with over and transparent.

Instance details

Defined in Data.Colour.Internal

Num a => Semigroup (Colour a) # 
Instance details

Defined in Data.Colour.Internal

Methods

(<>) :: Colour a -> Colour a -> Colour a #

sconcat :: NonEmpty (Colour a) -> Colour a #

stimes :: Integral b => b -> Colour a -> Colour a #

Semigroup (IntMap a) #

Since: containers-0.5.7

Instance details

Defined in Data.IntMap.Internal

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (Seq a) #

Since: containers-0.5.7

Instance details

Defined in Data.Sequence.Internal

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Ord a => Semigroup (Intersection a) # 
Instance details

Defined in Data.Set.Internal

Semigroup (MergeSet a) # 
Instance details

Defined in Data.Set.Internal

Methods

(<>) :: MergeSet a -> MergeSet a -> MergeSet a #

sconcat :: NonEmpty (MergeSet a) -> MergeSet a #

stimes :: Integral b => b -> MergeSet a -> MergeSet a #

Ord a => Semigroup (Set a) #

Since: containers-0.5.7

Instance details

Defined in Data.Set.Internal

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

Semigroup (DNonEmpty a) # 
Instance details

Defined in Data.DList.DNonEmpty.Internal

Methods

(<>) :: DNonEmpty a -> DNonEmpty a -> DNonEmpty a #

sconcat :: NonEmpty (DNonEmpty a) -> DNonEmpty a #

stimes :: Integral b => b -> DNonEmpty a -> DNonEmpty a #

Semigroup (DList a) # 
Instance details

Defined in Data.DList.Internal

Methods

(<>) :: DList a -> DList a -> DList a #

sconcat :: NonEmpty (DList a) -> DList a #

stimes :: Integral b => b -> DList a -> DList a #

Semigroup (EnumSet k) # 
Instance details

Defined in Data.EnumSet

Methods

(<>) :: EnumSet k -> EnumSet k -> EnumSet k #

sconcat :: NonEmpty (EnumSet k) -> EnumSet k #

stimes :: Integral b => b -> EnumSet k -> EnumSet k #

(AssertNoSum Semigroup a, Generic a, Semigroup (Rep a ())) => Semigroup (GenericProduct a) # 
Instance details

Defined in Generic.Data.Internal.Generically

Semigroup (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (STM a) #

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(<>) :: STM a -> STM a -> STM a #

sconcat :: NonEmpty (STM a) -> STM a #

stimes :: Integral b => b -> STM a -> STM a #

Semigroup a => Semigroup (Identity a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup (First a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup a => Semigroup (Down a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a #

sconcat :: NonEmpty (Down a) -> Down a #

stimes :: Integral b => b -> Down a -> Down a #

Semigroup a => Semigroup (Dual a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Product a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Semigroup (Sum a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

(Generic a, Semigroup (Rep a ())) => Semigroup (Generically a) #

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Semigroup p => Semigroup (Par1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: Par1 p -> Par1 p -> Par1 p #

sconcat :: NonEmpty (Par1 p) -> Par1 p #

stimes :: Integral b => b -> Par1 p -> Par1 p #

Semigroup a => Semigroup (Q a) #

Since: ghc-internal-2.17.0.0

Instance details

Defined in GHC.Internal.TH.Syntax

Methods

(<>) :: Q a -> Q a -> Q a #

sconcat :: NonEmpty (Q a) -> Q a #

stimes :: Integral b => b -> Q a -> Q a #

Semigroup a => Semigroup (IO a) #

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Semigroup (NEIntMap a) #

Left-biased union

Instance details

Defined in Data.IntMap.NonEmpty.Internal

Methods

(<>) :: NEIntMap a -> NEIntMap a -> NEIntMap a #

sconcat :: NonEmpty (NEIntMap a) -> NEIntMap a #

stimes :: Integral b => b -> NEIntMap a -> NEIntMap a #

Semigroup (NESeq a) # 
Instance details

Defined in Data.Sequence.NonEmpty.Internal

Methods

(<>) :: NESeq a -> NESeq a -> NESeq a #

sconcat :: NonEmpty (NESeq a) -> NESeq a #

stimes :: Integral b => b -> NESeq a -> NESeq a #

Semigroup (MergeNESet a) # 
Instance details

Defined in Data.Set.NonEmpty.Internal

Ord a => Semigroup (NESet a) #

Left-biased union

Instance details

Defined in Data.Set.NonEmpty.Internal

Methods

(<>) :: NESet a -> NESet a -> NESet a #

sconcat :: NonEmpty (NESet a) -> NESet a #

stimes :: Integral b => b -> NESet a -> NESet a #

Ord a => Semigroup (MinQueue a) # 
Instance details

Defined in Data.PQueue.Internals

Methods

(<>) :: MinQueue a -> MinQueue a -> MinQueue a #

sconcat :: NonEmpty (MinQueue a) -> MinQueue a #

stimes :: Integral b => b -> MinQueue a -> MinQueue a #

Ord a => Semigroup (MaxQueue a) # 
Instance details

Defined in Data.PQueue.Max

Methods

(<>) :: MaxQueue a -> MaxQueue a -> MaxQueue a #

sconcat :: NonEmpty (MaxQueue a) -> MaxQueue a #

stimes :: Integral b => b -> MaxQueue a -> MaxQueue a #

Semigroup (Doc a) # 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Methods

(<>) :: Doc a -> Doc a -> Doc a #

sconcat :: NonEmpty (Doc a) -> Doc a #

stimes :: Integral b => b -> Doc a -> Doc a #

Semigroup (Array a) #

Since: primitive-0.6.3.0

Instance details

Defined in Data.Primitive.Array

Methods

(<>) :: Array a -> Array a -> Array a #

sconcat :: NonEmpty (Array a) -> Array a #

stimes :: Integral b => b -> Array a -> Array a #

Semigroup (PrimArray a) #

Since: primitive-0.6.4.0

Instance details

Defined in Data.Primitive.PrimArray

Methods

(<>) :: PrimArray a -> PrimArray a -> PrimArray a #

sconcat :: NonEmpty (PrimArray a) -> PrimArray a #

stimes :: Integral b => b -> PrimArray a -> PrimArray a #

Semigroup (SmallArray a) #

Since: primitive-0.6.3.0

Instance details

Defined in Data.Primitive.SmallArray

Semigroup (CharMap a) # 
Instance details

Defined in Data.IntMap.CharMap2

Methods

(<>) :: CharMap a -> CharMap a -> CharMap a #

sconcat :: NonEmpty (CharMap a) -> CharMap a #

stimes :: Integral b => b -> CharMap a -> CharMap a #

Semigroup (EnumSet e) # 
Instance details

Defined in Data.IntSet.EnumSet2

Methods

(<>) :: EnumSet e -> EnumSet e -> EnumSet e #

sconcat :: NonEmpty (EnumSet e) -> EnumSet e #

stimes :: Integral b => b -> EnumSet e -> EnumSet e #

Semigroup a => Semigroup (Maybe a) # 
Instance details

Defined in Data.Strict.Maybe

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup (Validity k) # 
Instance details

Defined in Data.HashMap.Internal.Debug

Methods

(<>) :: Validity k -> Validity k -> Validity k #

sconcat :: NonEmpty (Validity k) -> Validity k #

stimes :: Integral b => b -> Validity k -> Validity k #

(Hashable a, Eq a) => Semigroup (HashSet a) #

<> = union

\(O(n+m)\)

To obtain good performance, the smaller set must be presented as the first argument.

Examples

Expand
>>> fromList [1,2] <> fromList [2,3]
fromList [1,2,3]
Instance details

Defined in Data.HashSet.Internal

Methods

(<>) :: HashSet a -> HashSet a -> HashSet a #

sconcat :: NonEmpty (HashSet a) -> HashSet a #

stimes :: Integral b => b -> HashSet a -> HashSet a #

Semigroup (Vector a) # 
Instance details

Defined in Data.Vector

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Prim a => Semigroup (Vector a) # 
Instance details

Defined in Data.Vector.Primitive

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Storable a => Semigroup (Vector a) # 
Instance details

Defined in Data.Vector.Storable

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Semigroup (Vector a) # 
Instance details

Defined in Data.Vector.Strict

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Semigroup a => Semigroup (Maybe a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (Solo a) #

Since: base-4.15

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: Solo a -> Solo a -> Solo a #

sconcat :: NonEmpty (Solo a) -> Solo a #

stimes :: Integral b => b -> Solo a -> Solo a #

Semigroup [a] #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

(HasRange n, HasRange m) => Semigroup (ImportDirective' n m) Source # 
Instance details

Defined in Agda.Syntax.Common

Semigroup (Using' n m) Source # 
Instance details

Defined in Agda.Syntax.Common

Methods

(<>) :: Using' n m -> Using' n m -> Using' n m #

sconcat :: NonEmpty (Using' n m) -> Using' n m #

stimes :: Integral b => b -> Using' n m -> Using' n m #

Semigroup a => Semigroup (Blocked' t a) Source # 
Instance details

Defined in Agda.Syntax.Internal.Blockers

Methods

(<>) :: Blocked' t a -> Blocked' t a -> Blocked' t a #

sconcat :: NonEmpty (Blocked' t a) -> Blocked' t a #

stimes :: Integral b => b -> Blocked' t a -> Blocked' t a #

(Monad m, Semigroup a) => Semigroup (PureConversionT m a) Source # 
Instance details

Defined in Agda.TypeChecking.Conversion.Pure

(MonadIO m, Semigroup a) => Semigroup (TCMT m a) Source #

Strict (non-shortcut) semigroup.

Note that there might be a lazy alternative, e.g., for TCM All we might want and2M as concatenation, to shortcut conjunction in case we already have False.

Instance details

Defined in Agda.TypeChecking.Monad.Base

Methods

(<>) :: TCMT m a -> TCMT m a -> TCMT m a #

sconcat :: NonEmpty (TCMT m a) -> TCMT m a #

stimes :: Integral b => b -> TCMT m a -> TCMT m a #

Monad m => Semigroup (ListT m a) Source # 
Instance details

Defined in Agda.Utils.ListT

Methods

(<>) :: ListT m a -> ListT m a -> ListT m a #

sconcat :: NonEmpty (ListT m a) -> ListT m a #

stimes :: Integral b => b -> ListT m a -> ListT m a #

Semigroup a => Semigroup (ConcurrentlyE e a) #

Either the combination of the successful results, or the first failure.

Instance details

Defined in Control.Concurrent.Async.Internal

Semigroup a => Semigroup (Op a b) #

(<>) @(Op a b) without newtypes is (<>) @(b->a) = liftA2 (<>). This lifts the Semigroup operation (<>) over the output of a.

(<>) :: Op a b -> Op a b -> Op a b
Op f <> Op g = Op a -> f a <> g a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op a b -> Op a b -> Op a b #

sconcat :: NonEmpty (Op a b) -> Op a b #

stimes :: Integral b0 => b0 -> Op a b -> Op a b #

Ord k => Semigroup (Map k v) # 
Instance details

Defined in Data.Map.Internal

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

Semigroup (EnumMap k a) # 
Instance details

Defined in Data.EnumMap.Base

Methods

(<>) :: EnumMap k a -> EnumMap k a -> EnumMap k a #

sconcat :: NonEmpty (EnumMap k a) -> EnumMap k a #

stimes :: Integral b => b -> EnumMap k a -> EnumMap k a #

Semigroup (r p) => Semigroup (Data r p) # 
Instance details

Defined in Generic.Data.Internal.Data

Methods

(<>) :: Data r p -> Data r p -> Data r p #

sconcat :: NonEmpty (Data r p) -> Data r p #

stimes :: Integral b => b -> Data r p -> Data r p #

Semigroup (Either a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

Semigroup (Proxy s) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

(<>) :: Proxy s -> Proxy s -> Proxy s #

sconcat :: NonEmpty (Proxy s) -> Proxy s #

stimes :: Integral b => b -> Proxy s -> Proxy s #

Semigroup (U1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: U1 p -> U1 p -> U1 p #

sconcat :: NonEmpty (U1 p) -> U1 p #

stimes :: Integral b => b -> U1 p -> U1 p #

Semigroup (V1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: V1 p -> V1 p -> V1 p #

sconcat :: NonEmpty (V1 p) -> V1 p #

stimes :: Integral b => b -> V1 p -> V1 p #

Semigroup a => Semigroup (ST s a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.ST

Methods

(<>) :: ST s a -> ST s a -> ST s a #

sconcat :: NonEmpty (ST s a) -> ST s a #

stimes :: Integral b => b -> ST s a -> ST s a #

Ord k => Semigroup (NEMap k a) #

Left-biased union

Instance details

Defined in Data.Map.NonEmpty.Internal

Methods

(<>) :: NEMap k a -> NEMap k a -> NEMap k a #

sconcat :: NonEmpty (NEMap k a) -> NEMap k a #

stimes :: Integral b => b -> NEMap k a -> NEMap k a #

Ord k => Semigroup (EnumMap k a) # 
Instance details

Defined in Data.IntMap.EnumMap2

Methods

(<>) :: EnumMap k a -> EnumMap k a -> EnumMap k a #

sconcat :: NonEmpty (EnumMap k a) -> EnumMap k a #

stimes :: Integral b => b -> EnumMap k a -> EnumMap k a #

Semigroup (Either a b) # 
Instance details

Defined in Data.Strict.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (These a b) # 
Instance details

Defined in Data.Strict.These

Methods

(<>) :: These a b -> These a b -> These a b #

sconcat :: NonEmpty (These a b) -> These a b #

stimes :: Integral b0 => b0 -> These a b -> These a b #

(Semigroup a, Semigroup b) => Semigroup (Pair a b) # 
Instance details

Defined in Data.Strict.Tuple

Methods

(<>) :: Pair a b -> Pair a b -> Pair a b #

sconcat :: NonEmpty (Pair a b) -> Pair a b #

stimes :: Integral b0 => b0 -> Pair a b -> Pair a b #

(Semigroup a, Semigroup b) => Semigroup (These a b) # 
Instance details

Defined in Data.These

Methods

(<>) :: These a b -> These a b -> These a b #

sconcat :: NonEmpty (These a b) -> These a b #

stimes :: Integral b0 => b0 -> These a b -> These a b #

(Monad m, Semigroup doc) => Semigroup (MaybeT m doc) Source # 
Instance details

Defined in Agda.Utils.Semigroup

Methods

(<>) :: MaybeT m doc -> MaybeT m doc -> MaybeT m doc #

sconcat :: NonEmpty (MaybeT m doc) -> MaybeT m doc #

stimes :: Integral b => b -> MaybeT m doc -> MaybeT m doc #

(Eq k, Hashable k) => Semigroup (HashMap k v) #

<> = union

If a key occurs in both maps, the mapping from the first will be the mapping in the result.

Examples

Expand
>>> fromList [(1,'a'),(2,'b')] <> fromList [(2,'c'),(3,'d')]
fromList [(1,'a'),(2,'b'),(3,'d')]
Instance details

Defined in Data.HashMap.Internal

Methods

(<>) :: HashMap k v -> HashMap k v -> HashMap k v #

sconcat :: NonEmpty (HashMap k v) -> HashMap k v #

stimes :: Integral b => b -> HashMap k v -> HashMap k v #

(Semigroup a, Semigroup b) => Semigroup (a, b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup b => Semigroup (a -> b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup a => Semigroup (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

(Applicative f, Semigroup a) => Semigroup (Ap f a) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

Alternative f => Semigroup (Alt f a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Semigroup (f p) => Semigroup (Rec1 f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: Rec1 f p -> Rec1 f p -> Rec1 f p #

sconcat :: NonEmpty (Rec1 f p) -> Rec1 f p #

stimes :: Integral b => b -> Rec1 f p -> Rec1 f p #

Semigroup a => Semigroup (Tagged s a) # 
Instance details

Defined in Data.Tagged

Methods

(<>) :: Tagged s a -> Tagged s a -> Tagged s a #

sconcat :: NonEmpty (Tagged s a) -> Tagged s a #

stimes :: Integral b => b -> Tagged s a -> Tagged s a #

(Monad m, Semigroup doc) => Semigroup (ExceptT e m doc) Source # 
Instance details

Defined in Agda.Utils.Semigroup

Methods

(<>) :: ExceptT e m doc -> ExceptT e m doc -> ExceptT e m doc #

sconcat :: NonEmpty (ExceptT e m doc) -> ExceptT e m doc #

stimes :: Integral b => b -> ExceptT e m doc -> ExceptT e m doc #

(Applicative m, Semigroup doc) => Semigroup (ReaderT s m doc) Source # 
Instance details

Defined in Agda.Utils.Semigroup

Methods

(<>) :: ReaderT s m doc -> ReaderT s m doc -> ReaderT s m doc #

sconcat :: NonEmpty (ReaderT s m doc) -> ReaderT s m doc #

stimes :: Integral b => b -> ReaderT s m doc -> ReaderT s m doc #

(Monad m, Semigroup doc) => Semigroup (StateT s m doc) Source # 
Instance details

Defined in Agda.Utils.Semigroup

Methods

(<>) :: StateT s m doc -> StateT s m doc -> StateT s m doc #

sconcat :: NonEmpty (StateT s m doc) -> StateT s m doc #

stimes :: Integral b => b -> StateT s m doc -> StateT s m doc #

(Monad m, Semigroup doc, Monoid w) => Semigroup (WriterT w m doc) Source # 
Instance details

Defined in Agda.Utils.Semigroup

Methods

(<>) :: WriterT w m doc -> WriterT w m doc -> WriterT w m doc #

sconcat :: NonEmpty (WriterT w m doc) -> WriterT w m doc #

stimes :: Integral b => b -> WriterT w m doc -> WriterT w m doc #

Semigroup a => Semigroup (Constant a b) # 
Instance details

Defined in Data.Functor.Constant

Methods

(<>) :: Constant a b -> Constant a b -> Constant a b #

sconcat :: NonEmpty (Constant a b) -> Constant a b #

stimes :: Integral b0 => b0 -> Constant a b -> Constant a b #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

(Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) #

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Product

Methods

(<>) :: Product f g a -> Product f g a -> Product f g a #

sconcat :: NonEmpty (Product f g a) -> Product f g a #

stimes :: Integral b => b -> Product f g a -> Product f g a #

(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

sconcat :: NonEmpty ((f :*: g) p) -> (f :*: g) p #

stimes :: Integral b => b -> (f :*: g) p -> (f :*: g) p #

Semigroup c => Semigroup (K1 i c p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: K1 i c p -> K1 i c p -> K1 i c p #

sconcat :: NonEmpty (K1 i c p) -> K1 i c p #

stimes :: Integral b => b -> K1 i c p -> K1 i c p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

Semigroup (f (g a)) => Semigroup (Compose f g a) #

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(<>) :: Compose f g a -> Compose f g a -> Compose f g a #

sconcat :: NonEmpty (Compose f g a) -> Compose f g a #

stimes :: Integral b => b -> Compose f g a -> Compose f g a #

Semigroup (f (g p)) => Semigroup ((f :.: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

sconcat :: NonEmpty ((f :.: g) p) -> (f :.: g) p #

stimes :: Integral b => b -> (f :.: g) p -> (f :.: g) p #

Semigroup (f p) => Semigroup (M1 i c f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(<>) :: M1 i c f p -> M1 i c f p -> M1 i c f p #

sconcat :: NonEmpty (M1 i c f p) -> M1 i c f p #

stimes :: Integral b => b -> M1 i c f p -> M1 i c f p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

Orphan instances

(Monad m, Semigroup doc) => Semigroup (MaybeT m doc) Source # 
Instance details

Methods

(<>) :: MaybeT m doc -> MaybeT m doc -> MaybeT m doc #

sconcat :: NonEmpty (MaybeT m doc) -> MaybeT m doc #

stimes :: Integral b => b -> MaybeT m doc -> MaybeT m doc #

(Monad m, Semigroup doc) => Semigroup (ExceptT e m doc) Source # 
Instance details

Methods

(<>) :: ExceptT e m doc -> ExceptT e m doc -> ExceptT e m doc #

sconcat :: NonEmpty (ExceptT e m doc) -> ExceptT e m doc #

stimes :: Integral b => b -> ExceptT e m doc -> ExceptT e m doc #

(Applicative m, Semigroup doc) => Semigroup (ReaderT s m doc) Source # 
Instance details

Methods

(<>) :: ReaderT s m doc -> ReaderT s m doc -> ReaderT s m doc #

sconcat :: NonEmpty (ReaderT s m doc) -> ReaderT s m doc #

stimes :: Integral b => b -> ReaderT s m doc -> ReaderT s m doc #

(Monad m, Semigroup doc) => Semigroup (StateT s m doc) Source # 
Instance details

Methods

(<>) :: StateT s m doc -> StateT s m doc -> StateT s m doc #

sconcat :: NonEmpty (StateT s m doc) -> StateT s m doc #

stimes :: Integral b => b -> StateT s m doc -> StateT s m doc #

(Monad m, Semigroup doc, Monoid w) => Semigroup (WriterT w m doc) Source # 
Instance details

Methods

(<>) :: WriterT w m doc -> WriterT w m doc -> WriterT w m doc #

sconcat :: NonEmpty (WriterT w m doc) -> WriterT w m doc #

stimes :: Integral b => b -> WriterT w m doc -> WriterT w m doc #