------------------------------------------------------------------------ -- The Agda standard library -- -- Reflection-based solver for monoid equalities ------------------------------------------------------------------------ -- -- This solver automates the construction of proofs of equivalences -- between monoid expressions. -- When called like so: -- -- proof : ∀ x y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) ∙ ε -- proof x y z = solve mon -- -- The following diagram describes what happens under the hood: -- -- ┌▸x ∙ (y ∙ (z ∙ ε)) ════ x ∙ (y ∙ (z ∙ ε))◂┐ -- │ ║ ║ │ -- │ ║ ║ │ -- [_⇓] ║ ║ [_⇓] -- ╱ ║ ║ ╲ -- ╱ ║ ║ ╲ -- (x ∙′ y) ∙′ z homo homo x ∙′ (y ∙′ z) ∙′ ε′ -- ▴ ╲ ║ ║ ╱ ▴ -- │ ╲ ║ ║ ╱ │ -- │ [_↓] ║ ║ [_↓] │ -- │ │ ║ ║ │ │ -- │ │ ║ ║ │ │ -- │ └───▸(x ∙ y) ∙ z x ∙ (y ∙ z) ∙ ε◂─┘ │ -- │ │ │ │ -- │ │ │ │ -- └────reflection────┘ └───reflection──────┘ -- -- The actual output—the proof constructed by the solver—is represented -- by the double-lined path (══). -- -- We start at the bottom, with our two expressions. -- Through reflection, we convert these two expressions to their AST -- representations, in the Expr type. -- We then can evaluate the AST in two ways: one simply gives us back -- the two expressions we put in ([_↓]), and the other normalises -- ([_⇓]). -- We use the homo function to prove equivalence between these two -- forms: joining up these two proofs gives us the desired overall -- proof. -- Note: What's going on with the Monoid parameter? -- -- This module is not parameterised over a monoid, which is contrary -- to what you might expect. Instead, we take the monoid record as an -- argument to the solve macro, and then pass it around as an -- argument wherever we need it. -- -- We need to get the monoid record at the call site, not the import -- site, to ensure that it's consistent with the rest of the context. -- For instance, if we wanted to produce `x ∙ y` using the monoid record -- as imported, we would run into problems: -- * If we tried to just reflect on the expression itself -- (quoteTerm (x ∙ y)) we would likely get some de Bruijn indices -- wrong (in x and y), and ∙ might not even be in scope where the -- user wants us to solve! If they're solving an expression like -- x + (y + z), they can pass in the +-0-monoid, but don't have to -- open it themselves. -- * If instead we tried to construct a term which accesses the _∙_ -- field on the reflection of the record, we'd run into similar -- problems again. While the record is a parameter for us, it might -- not be for the user. -- Basically, we need the Monoid we're looking at to be exactly the -- same as the one the user is looking at, and in order to do that we -- quote it at the call site. {-# OPTIONS --cubical-compatible --safe #-} module Tactic.MonoidSolver where open import Algebra open import Function.Base using (_⟨_⟩_) open import Data.Bool as Bool using (Bool; _∨_; if_then_else_) open import Data.Maybe as Maybe using (Maybe; just; nothing; maybe) open import Data.List.Base as List using (List; _∷_; []) open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Product.Base as Product using (_×_; _,_) open import Reflection.AST open import Reflection.AST.Term open import Reflection.AST.Argument import Reflection.AST.Name as Name open import Reflection.TCM open import Reflection.TCM.Syntax import Relation.Binary.Reasoning.Setoid as SetoidReasoning ------------------------------------------------------------------------ -- The Expr type with homomorphism proofs ------------------------------------------------------------------------ infixl 7 _∙′_ data Expr {a} (A : Set a) : Set a where _∙′_ : Expr A → Expr A → Expr A ε′ : Expr A [_↑] : A → Expr A module _ {m₁ m₂} (monoid : Monoid m₁ m₂) where open Monoid monoid open SetoidReasoning setoid -- Convert the AST to an expression (i.e. evaluate it) without -- normalising. [_↓] : Expr Carrier → Carrier [ x ∙′ y ↓] = [ x ↓] ∙ [ y ↓] [ ε′ ↓] = ε [ [ x ↑] ↓] = x -- Convert an AST to an expression (i.e. evaluate it) while -- normalising. -- -- This first function actually converts an AST to the Cayley -- representation of the underlying monoid. -- This obeys the monoid laws up to beta-eta equality, which is the -- property which gives us the "normalising" behaviour we want. [_⇓]′ : Expr Carrier → Carrier → Carrier [ x ∙′ y ⇓]′ z = [ x ⇓]′ ([ y ⇓]′ z) [ ε′ ⇓]′ y = y [ [ x ↑] ⇓]′ y = x ∙ y [_⇓] : Expr Carrier → Carrier [ x ⇓] = [ x ⇓]′ ε homo′ : ∀ x y → [ x ⇓] ∙ y ≈ [ x ⇓]′ y homo′ ε′ y = identityˡ y homo′ [ x ↑] y = ∙-congʳ (identityʳ x) homo′ (x ∙′ y) z = begin [ x ∙′ y ⇓] ∙ z ≡⟨⟩ [ x ⇓]′ [ y ⇓] ∙ z ≈⟨ ∙-congʳ (homo′ x [ y ⇓]) ⟨ ([ x ⇓] ∙ [ y ⇓]) ∙ z ≈⟨ assoc [ x ⇓] [ y ⇓] z ⟩ [ x ⇓] ∙ ([ y ⇓] ∙ z) ≈⟨ ∙-congˡ (homo′ y z) ⟩ [ x ⇓] ∙ ([ y ⇓]′ z) ≈⟨ homo′ x ([ y ⇓]′ z) ⟩ [ x ⇓]′ ([ y ⇓]′ z) ∎ homo : ∀ x → [ x ⇓] ≈ [ x ↓] homo ε′ = refl homo [ x ↑] = identityʳ x homo (x ∙′ y) = begin [ x ∙′ y ⇓] ≡⟨⟩ [ x ⇓]′ [ y ⇓] ≈⟨ homo′ x [ y ⇓] ⟨ [ x ⇓] ∙ [ y ⇓] ≈⟨ ∙-cong (homo x) (homo y) ⟩ [ x ↓] ∙ [ y ↓] ∎ ------------------------------------------------------------------------ -- Helpers for reflection ------------------------------------------------------------------------ getArgs : Term → Maybe (Term × Term) getArgs (def _ xs) = go xs where go : List (Arg Term) → Maybe (Term × Term) go (vArg x ∷ vArg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getArgs _ = nothing ------------------------------------------------------------------------ -- Getting monoid names ------------------------------------------------------------------------ -- We try to be flexible here, by matching two kinds of names. -- The first is the field accessor for the monoid record itself. -- However, users will likely want to use the solver with -- expressions like: -- -- xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs -- -- So we also evaluate the field accessor to find functions like ++. record MonoidNames : Set where field is-∙ : Name → Bool is-ε : Name → Bool buildMatcher : Name → Maybe Name → Name → Bool buildMatcher n nothing x = n Name.≡ᵇ x buildMatcher n (just m) x = n Name.≡ᵇ x ∨ m Name.≡ᵇ x findMonoidNames : Term → TC MonoidNames findMonoidNames mon = do ∙-altName ← normalise (def (quote Monoid._∙_) (2 ⋯⟅∷⟆ mon ⟨∷⟩ [])) ε-altName ← normalise (def (quote Monoid.ε) (2 ⋯⟅∷⟆ mon ⟨∷⟩ [])) pure record { is-∙ = buildMatcher (quote Monoid._∙_) (getName ∙-altName) ; is-ε = buildMatcher (quote Monoid.ε) (getName ε-altName) } ------------------------------------------------------------------------ -- Building Expr ------------------------------------------------------------------------ -- We now define a function that takes an AST representing the LHS -- or RHS of the equation to solve and converts it into an AST -- respresenting the corresponding Expr. ″ε″ : Term ″ε″ = quote ε′ ⟨ con ⟩ [] [_↑]′ : Term → Term [ t ↑]′ = quote [_↑] ⟨ con ⟩ (t ⟨∷⟩ []) module _ (names : MonoidNames) where open MonoidNames names mutual ″∙″ : List (Arg Term) → Term ″∙″ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _∙′_ ⟨ con ⟩ buildExpr x ⟨∷⟩ buildExpr y ⟨∷⟩ [] ″∙″ (x ∷ xs) = ″∙″ xs ″∙″ _ = unknown buildExpr : Term → Term buildExpr t@(def n xs) = if is-∙ n then ″∙″ xs else if is-ε n then ″ε″ else [ t ↑]′ buildExpr t@(con n xs) = if is-∙ n then ″∙″ xs else if is-ε n then ″ε″ else [ t ↑]′ buildExpr t = quote [_↑] ⟨ con ⟩ (t ⟨∷⟩ []) ------------------------------------------------------------------------ -- Constructing the solution ------------------------------------------------------------------------ -- This function joins up the two homomorphism proofs. It constructs -- a proof of the following form: -- -- trans (sym (homo x)) (homo y) -- -- where x and y are the Expr representations of each side of the -- goal equation. constructSoln : Term → MonoidNames → Term → Term → Term constructSoln mon names lhs rhs = quote Monoid.trans ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote Monoid.sym ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote homo ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ buildExpr names lhs ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩ (quote homo ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ buildExpr names rhs ⟨∷⟩ []) ⟨∷⟩ [] ------------------------------------------------------------------------ -- Macro ------------------------------------------------------------------------ solve-macro : Term → Term → TC _ solve-macro mon hole = do hole′ ← inferType hole >>= normalise names ← findMonoidNames mon just (lhs , rhs) ← pure (getArgs hole′) where nothing → typeError (termErr hole′ ∷ []) let soln = constructSoln mon names lhs rhs unify hole soln macro solve : Term → Term → TC _ solve = solve-macro