{-# OPTIONS --cubical-compatible --safe #-}
open import Function using (case_of_)
open import Level using (_⊔_)
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import Relation.Nullary.Decidable using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
open import Relation.Binary.Reasoning.Syntax
module Relation.Binary.Reasoning.Base.Partial
{a ℓ} {A : Set a} (_∼_ : Rel A ℓ) (trans : Transitive _∼_)
where
infix 4 _IsRelatedTo_
data _IsRelatedTo_ : A → A → Set (a ⊔ ℓ) where
singleStep : ∀ x → x IsRelatedTo x
multiStep : ∀ {x y} (x∼y : x ∼ y) → x IsRelatedTo y
∼-go : Trans _∼_ _IsRelatedTo_ _IsRelatedTo_
∼-go x∼y (singleStep y) = multiStep x∼y
∼-go x∼y (multiStep y∼z) = multiStep (trans x∼y y∼z)
stop : Reflexive _IsRelatedTo_
stop = singleStep _
data IsMultiStep {x y} : x IsRelatedTo y → Set (a ⊔ ℓ) where
isMultiStep : ∀ x∼y → IsMultiStep (multiStep x∼y)
IsMultiStep? : ∀ {x y} (x∼y : x IsRelatedTo y) → Dec (IsMultiStep x∼y)
IsMultiStep? (multiStep x<y) = yes (isMultiStep x<y)
IsMultiStep? (singleStep _) = no λ()
extractMultiStep : ∀ {x y} {x∼y : x IsRelatedTo y} → IsMultiStep x∼y → x ∼ y
extractMultiStep (isMultiStep x≈y) = x≈y
multiStepSubRelation : SubRelation _IsRelatedTo_ _ _
multiStepSubRelation = record
{ IsS = IsMultiStep
; IsS? = IsMultiStep?
; extract = extractMultiStep
}
open begin-subrelation-syntax _IsRelatedTo_ multiStepSubRelation public
open ≡-noncomputing-syntax _IsRelatedTo_ public
open ∼-syntax _IsRelatedTo_ _IsRelatedTo_ ∼-go public
open end-syntax _IsRelatedTo_ stop public
infix 3 _∎⟨_⟩
_∎⟨_⟩ : ∀ x → x ∼ x → x IsRelatedTo x
_ ∎⟨ x∼x ⟩ = multiStep x∼x
{-# WARNING_ON_USAGE _∎⟨_⟩
"Warning: _∎⟨_⟩ was deprecated in v1.6.
Please use _∎ instead if used in a chain, otherwise simply provide
the proof of reflexivity directly without using these combinators."
#-}