{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Indexed.Homogeneous.Core
module Relation.Binary.Indexed.Homogeneous.Structures
{i a ℓ} {I : Set i}
(A : I → Set a)
(_≈ᵢ_ : IRel A ℓ)
where
open import Data.Product.Base using (_,_)
open import Function.Base using (_⟨_⟩_)
open import Level using (Level; _⊔_; suc)
open import Relation.Binary.Core using (_⇒_)
import Relation.Binary.Definitions as B
import Relation.Binary.Structures as B
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
open import Relation.Binary.Indexed.Homogeneous.Definitions
record IsIndexedEquivalence : Set (i ⊔ a ⊔ ℓ) where
field
reflᵢ : Reflexive A _≈ᵢ_
symᵢ : Symmetric A _≈ᵢ_
transᵢ : Transitive A _≈ᵢ_
reflexiveᵢ : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈ᵢ_ {i}
reflexiveᵢ P.refl = reflᵢ
reflexive : _≡_ ⇒ (Lift A _≈ᵢ_)
reflexive P.refl i = reflᵢ
refl : B.Reflexive (Lift A _≈ᵢ_)
refl i = reflᵢ
sym : B.Symmetric (Lift A _≈ᵢ_)
sym x≈y i = symᵢ (x≈y i)
trans : B.Transitive (Lift A _≈ᵢ_)
trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i)
isEquivalence : B.IsEquivalence (Lift A _≈ᵢ_)
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
record IsIndexedDecEquivalence : Set (i ⊔ a ⊔ ℓ) where
infix 4 _≟ᵢ_
field
_≟ᵢ_ : Decidable A _≈ᵢ_
isEquivalenceᵢ : IsIndexedEquivalence
open IsIndexedEquivalence isEquivalenceᵢ public
record IsIndexedPreorder {ℓ₂} (_∼ᵢ_ : IRel A ℓ₂)
: Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where
field
isEquivalenceᵢ : IsIndexedEquivalence
reflexiveᵢ : _≈ᵢ_ ⇒[ A ] _∼ᵢ_
transᵢ : Transitive A _∼ᵢ_
module Eq = IsIndexedEquivalence isEquivalenceᵢ
reflᵢ : Reflexive A _∼ᵢ_
reflᵢ = reflexiveᵢ Eq.reflᵢ
∼ᵢ-respˡ-≈ᵢ : Respectsˡ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-respˡ-≈ᵢ x≈y x∼z = transᵢ (reflexiveᵢ (Eq.symᵢ x≈y)) x∼z
∼ᵢ-respʳ-≈ᵢ : Respectsʳ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-respʳ-≈ᵢ x≈y z∼x = transᵢ z∼x (reflexiveᵢ x≈y)
∼ᵢ-resp-≈ᵢ : Respects₂ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-resp-≈ᵢ = ∼ᵢ-respʳ-≈ᵢ , ∼ᵢ-respˡ-≈ᵢ
reflexive : Lift A _≈ᵢ_ ⇒ Lift A _∼ᵢ_
reflexive x≈y i = reflexiveᵢ (x≈y i)
refl : B.Reflexive (Lift A _∼ᵢ_)
refl i = reflᵢ
trans : B.Transitive (Lift A _∼ᵢ_)
trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i)
∼-respˡ-≈ : (Lift A _∼ᵢ_) B.Respectsˡ (Lift A _≈ᵢ_)
∼-respˡ-≈ x≈y x∼z i = ∼ᵢ-respˡ-≈ᵢ (x≈y i) (x∼z i)
∼-respʳ-≈ : (Lift A _∼ᵢ_) B.Respectsʳ (Lift A _≈ᵢ_)
∼-respʳ-≈ x≈y z∼x i = ∼ᵢ-respʳ-≈ᵢ (x≈y i) (z∼x i)
∼-resp-≈ : (Lift A _∼ᵢ_) B.Respects₂ (Lift A _≈ᵢ_)
∼-resp-≈ = ∼-respʳ-≈ , ∼-respˡ-≈
isPreorder : B.IsPreorder (Lift A _≈ᵢ_) (Lift A _∼ᵢ_)
isPreorder = record
{ isEquivalence = Eq.isEquivalence
; reflexive = reflexive
; trans = trans
}
record IsIndexedPartialOrder {ℓ₂} (_≤ᵢ_ : IRel A ℓ₂)
: Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where
field
isPreorderᵢ : IsIndexedPreorder _≤ᵢ_
antisymᵢ : Antisymmetric A _≈ᵢ_ _≤ᵢ_
open IsIndexedPreorder isPreorderᵢ public
renaming
( ∼ᵢ-respˡ-≈ᵢ to ≤ᵢ-respˡ-≈ᵢ
; ∼ᵢ-respʳ-≈ᵢ to ≤ᵢ-respʳ-≈ᵢ
; ∼ᵢ-resp-≈ᵢ to ≤ᵢ-resp-≈ᵢ
; ∼-respˡ-≈ to ≤-respˡ-≈
; ∼-respʳ-≈ to ≤-respʳ-≈
; ∼-resp-≈ to ≤-resp-≈
)
antisym : B.Antisymmetric (Lift A _≈ᵢ_) (Lift A _≤ᵢ_)
antisym x≤y y≤x i = antisymᵢ (x≤y i) (y≤x i)
isPartialOrder : B.IsPartialOrder (Lift A _≈ᵢ_) (Lift A _≤ᵢ_)
isPartialOrder = record
{ isPreorder = isPreorder
; antisym = antisym
}