------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous equality
------------------------------------------------------------------------

{-# OPTIONS --with-K --safe #-}

module Relation.Binary.HeterogeneousEquality where

import Axiom.Extensionality.Heterogeneous as Ext
open import Data.Unit.NonEta
open import Data.Product.Base using (_,_)
open import Function.Base
open import Function.Bundles using (Inverse)
open import Level
open import Relation.Nullary hiding (Irrelevant)
open import Relation.Unary using (Pred)
open import Relation.Binary.Core using (Rel; REL; _⇒_)
open import Relation.Binary.Bundles using (Setoid; DecSetoid; Preorder)
open import Relation.Binary.Structures using (IsEquivalence; IsPreorder)
open import Relation.Binary.Definitions using (Substitutive; Irrelevant; Decidable; _Respects₂_; Trans; Reflexive)
open import Relation.Binary.Consequences
open import Relation.Binary.Indexed.Heterogeneous
  using (IndexedSetoid)
open import Relation.Binary.Indexed.Heterogeneous.Construct.At
  using (_atₛ_)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; refl)
open import Relation.Binary.Reasoning.Syntax

import Relation.Binary.PropositionalEquality.Properties as P
import Relation.Binary.HeterogeneousEquality.Core as Core

private
  variable
    a b c p r  : Level
    A : Set a
    B : Set b
    C : Set c

------------------------------------------------------------------------
-- Heterogeneous equality

infix 4 _≇_

open Core public using (_≅_; refl)

-- Nonequality.

_≇_ :  {A : Set a}  A  {B : Set b}  B  Set a
x  y = ¬ x  y

------------------------------------------------------------------------
-- Conversion

open Core public using (≅-to-≡; ≡-to-≅)

≅-to-type-≡ :  {A B : Set a} {x : A} {y : B}  x  y  A  B
≅-to-type-≡ refl = refl

≅-to-subst-≡ :  {A B : Set a} {x : A} {y : B}  (p : x  y) 
               P.subst  x  x) (≅-to-type-≡ p) x  y
≅-to-subst-≡ refl = refl

------------------------------------------------------------------------
-- Some properties

reflexive : _⇒_ {A = A} _≡_  x y  x  y)
reflexive refl = refl

sym :  {x : A} {y : B}  x  y  y  x
sym refl = refl

trans :  {x : A} {y : B} {z : C}  x  y  y  z  x  z
trans refl eq = eq

subst : Substitutive {A = A}  x y  x  y) 
subst P refl p = p

subst₂ :  (_∼_ : REL A B r) {x y u v}  x  y  u  v  x  u  y  v
subst₂ _∼_ refl refl z = z

subst-removable :  (P : Pred A p) {x y} (eq : x  y) (z : P x) 
                  subst P eq z  z
subst-removable P refl z = refl

subst₂-removable :  (_∼_ : REL A B r) {x y u v} (eq₁ : x  y) (eq₂ : u  v) (z : x  u) 
                   subst₂ _∼_ eq₁ eq₂ z  z
subst₂-removable _∼_ refl refl z = refl

≡-subst-removable :  (P : Pred A p) {x y} (eq : x  y) (z : P x) 
                    P.subst P eq z  z
≡-subst-removable P refl z = refl

cong :  {A : Set a} {B : A  Set b} {x y}
       (f : (x : A)  B x)  x  y  f x  f y
cong f refl = refl

cong-app :  {A : Set a} {B : A  Set b} {f g : (x : A)  B x} 
           f  g  (x : A)  f x  g x
cong-app refl x = refl

cong₂ :  {A : Set a} {B : A  Set b} {C :  x  B x  Set c} {x y u v}
        (f : (x : A) (y : B x)  C x y)  x  y  u  v  f x u  f y v
cong₂ f refl refl = refl

resp₂ :  ( : Rel A )   Respects₂  x y  x  y)
resp₂ _∼_ = subst⇒resp₂ _∼_ subst

module _ {I : Set } (A : I  Set a) {B : {k : I}  A k  Set b} where

  icong : {i j : I} {x : A i} {y : A j} 
          i  j 
          (f : {k : I}  (z : A k)  B z) 
          x  y 
          f x  f y
  icong refl _ refl = refl

  icong₂ : {C : {k : I}  (a : A k)  B a  Set c}
           {i j : I} {x : A i} {y : A j} {u : B x} {v : B y} 
           i  j 
           (f : {k : I}  (z : A k)  (w : B z)  C z w) 
           x  y  u  v 
           f x u  f y v
  icong₂ refl _ refl refl = refl

  icong-subst-removable : {i j : I} (eq : i  j)
                          (f : {k : I}  (z : A k)  B z)
                          (x : A i) 
                          f (subst A eq x)  f x
  icong-subst-removable refl _ _ = refl

  icong-≡-subst-removable : {i j : I} (eq : i  j)
                            (f : {k : I}  (z : A k)  B z)
                            (x : A i) 
                            f (P.subst A eq x)  f x
  icong-≡-subst-removable refl _ _ = refl

------------------------------------------------------------------------
--Proof irrelevance

≅-irrelevant : {A B : Set }  Irrelevant ((A  B  Set )  λ a  a ≅_)
≅-irrelevant refl refl = refl

module _ {A C : Set a} {B D : Set }
         {w : A} {x : B} {y : C} {z : D} where

 ≅-heterogeneous-irrelevant : (p : w  x) (q : y  z)  x  y  p  q
 ≅-heterogeneous-irrelevant refl refl refl = refl

 ≅-heterogeneous-irrelevantˡ : (p : w  x) (q : y  z)  w  y  p  q
 ≅-heterogeneous-irrelevantˡ refl refl refl = refl

 ≅-heterogeneous-irrelevantʳ : (p : w  x) (q : y  z)  x  z  p  q
 ≅-heterogeneous-irrelevantʳ refl refl refl = refl

------------------------------------------------------------------------
-- Structures

isEquivalence : IsEquivalence {A = A}  x y  x  y)
isEquivalence = record
  { refl  = refl
  ; sym   = sym
  ; trans = trans
  }

setoid : Set   Setoid  
setoid A = record
  { Carrier       = A
  ; _≈_           = λ x y  x  y
  ; isEquivalence = isEquivalence
  }

indexedSetoid : (A  Set b)  IndexedSetoid A _ _
indexedSetoid B = record
  { Carrier       = B
  ; _≈_           = λ x y  x  y
  ; isEquivalence = record
    { refl  = refl
    ; sym   = sym
    ; trans = trans
    }
  }

≡↔≅ :  {A : Set a} (B : A  Set b) {x : A} 
      Inverse (P.setoid (B x)) ((indexedSetoid B) atₛ x)
≡↔≅ B = record
  { to         = id
  ; to-cong    = ≡-to-≅
  ; from       = id
  ; from-cong  = ≅-to-≡
  ; inverse    =  { P.refl  refl }) , λ { refl  P.refl }
  }

decSetoid : Decidable {A = A} {B = A}  x y  x  y) 
            DecSetoid _ _
decSetoid dec = record
  { _≈_              = λ x y  x  y
  ; isDecEquivalence = record
      { isEquivalence = isEquivalence
      ; _≟_           = dec
      }
  }

isPreorder : IsPreorder {A = A}  x y  x  y)  x y  x  y)
isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = id
  ; trans         = trans
  }

isPreorder-≡ : IsPreorder {A = A} _≡_  x y  x  y)
isPreorder-≡ = record
  { isEquivalence = P.isEquivalence
  ; reflexive     = reflexive
  ; trans         = trans
  }

preorder : Set   Preorder   
preorder A = record
  { Carrier    = A
  ; _≈_        = _≡_
  ; _≲_        = λ x y  x  y
  ; isPreorder = isPreorder-≡
  }

------------------------------------------------------------------------
-- Convenient syntax for equational reasoning

module ≅-Reasoning where

  -- The code in `Relation.Binary.Reasoning.Setoid` cannot handle
  -- heterogeneous equalities, hence the code duplication here.

  infix 4 _IsRelatedTo_

  data _IsRelatedTo_ {A : Set } {B : Set } (x : A) (y : B) : Set  where
    relTo : (x≅y : x  y)  x IsRelatedTo y

  start :  {x : A} {y : B}  x IsRelatedTo y  x  y
  start (relTo x≅y) = x≅y

  ≡-go :  {A : Set a}  Trans {A = A} {C = A} _≡_ _IsRelatedTo_ _IsRelatedTo_
  ≡-go x≡y (relTo y≅z) = relTo (trans (reflexive x≡y) y≅z)

  -- Combinators with one heterogeneous relation
  module _ {A : Set } {B : Set } where
    open begin-syntax (_IsRelatedTo_ {A = A} {B}) start public

  -- Combinators with homogeneous relations
  module _ {A : Set } where
    open ≡-syntax (_IsRelatedTo_ {A = A}) ≡-go public
    open end-syntax (_IsRelatedTo_ {A = A}) (relTo refl) public

  -- Can't create syntax in the standard `Syntax` module for
  -- heterogeneous steps because it would force that module to use
  -- the `--with-k` option.
  infixr 2 _≅⟨_⟩_ _≅⟨_⟨_

  _≅⟨_⟩_ :  (x : A) {y : B} {z : C} 
           x  y  y IsRelatedTo z  x IsRelatedTo z
  _ ≅⟨ x≅y  relTo y≅z = relTo (trans x≅y y≅z)

  _≅⟨_⟨_ :  (x : A) {y : B} {z : C} 
            y  x  y IsRelatedTo z  x IsRelatedTo z
  _ ≅⟨ y≅x  relTo y≅z = relTo (trans (sym y≅x) y≅z)

  -- Deprecated
  infixr 2 _≅˘⟨_⟩_
  _≅˘⟨_⟩_ = _≅⟨_⟨_
  {-# WARNING_ON_USAGE _≅˘⟨_⟩_
  "Warning: _≅˘⟨_⟩_ was deprecated in v2.0.
  Please use _≅⟨_⟨_ instead."
  #-}

------------------------------------------------------------------------
-- Inspect

-- Inspect can be used when you want to pattern match on the result r
-- of some expression e, and you also need to "remember" that r ≡ e.

record Reveal_·_is_ {A : Set a} {B : A  Set b}
                    (f : (x : A)  B x) (x : A) (y : B x) :
                    Set (a  b) where
  constructor [_]
  field eq : f x  y

inspect :  {A : Set a} {B : A  Set b}
          (f : (x : A)  B x) (x : A)  Reveal f · x is f x
inspect f x = [ refl ]

-- Example usage:

-- f x y with g x | inspect g x
-- f x y | c z | [ eq ] = ...