{-# OPTIONS --cubical-compatible --safe #-}
module Reflection.AST.Definition where
import Data.List.Properties as Listₚ using (≡-dec)
import Data.Nat.Properties as ℕₚ using (_≟_)
open import Data.Product.Base using (_×_; <_,_>; uncurry)
open import Relation.Nullary.Decidable.Core using (map′; _×-dec_; yes; no)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; cong₂)
import Reflection.AST.Argument as Arg
import Reflection.AST.Name as Name
import Reflection.AST.Term as Term
open import Agda.Builtin.Reflection public
using ( Definition
; function
; data-type
; axiom
)
renaming ( record-type to record′
; data-cons to constructor′
; prim-fun to primitive′ )
function-injective : ∀ {cs cs′} → function cs ≡ function cs′ → cs ≡ cs′
function-injective refl = refl
data-type-injective₁ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′
data-type-injective₁ refl = refl
data-type-injective₂ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → cs ≡ cs′
data-type-injective₂ refl = refl
data-type-injective : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′ × cs ≡ cs′
data-type-injective = < data-type-injective₁ , data-type-injective₂ >
record′-injective₁ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′
record′-injective₁ refl = refl
record′-injective₂ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → fs ≡ fs′
record′-injective₂ refl = refl
record′-injective : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′ × fs ≡ fs′
record′-injective = < record′-injective₁ , record′-injective₂ >
constructor′-injective : ∀ {c c′} → constructor′ c ≡ constructor′ c′ → c ≡ c′
constructor′-injective refl = refl
infix 4 _≟_
_≟_ : DecidableEquality Definition
function cs ≟ function cs′ =
map′ (cong function) function-injective (cs Term.≟-Clauses cs′)
data-type pars cs ≟ data-type pars′ cs′ =
map′ (uncurry (cong₂ data-type)) data-type-injective
(pars ℕₚ.≟ pars′ ×-dec Listₚ.≡-dec Name._≟_ cs cs′)
record′ c fs ≟ record′ c′ fs′ =
map′ (uncurry (cong₂ record′)) record′-injective
(c Name.≟ c′ ×-dec Listₚ.≡-dec (Arg.≡-dec Name._≟_) fs fs′)
constructor′ d ≟ constructor′ d′ =
map′ (cong constructor′) constructor′-injective (d Name.≟ d′)
axiom ≟ axiom = yes refl
primitive′ ≟ primitive′ = yes refl
function cs ≟ data-type pars cs₁ = no (λ ())
function cs ≟ record′ c fs = no (λ ())
function cs ≟ constructor′ d = no (λ ())
function cs ≟ axiom = no (λ ())
function cs ≟ primitive′ = no (λ ())
data-type pars cs ≟ function cs₁ = no (λ ())
data-type pars cs ≟ record′ c fs = no (λ ())
data-type pars cs ≟ constructor′ d = no (λ ())
data-type pars cs ≟ axiom = no (λ ())
data-type pars cs ≟ primitive′ = no (λ ())
record′ c fs ≟ function cs = no (λ ())
record′ c fs ≟ data-type pars cs = no (λ ())
record′ c fs ≟ constructor′ d = no (λ ())
record′ c fs ≟ axiom = no (λ ())
record′ c fs ≟ primitive′ = no (λ ())
constructor′ d ≟ function cs = no (λ ())
constructor′ d ≟ data-type pars cs = no (λ ())
constructor′ d ≟ record′ c fs = no (λ ())
constructor′ d ≟ axiom = no (λ ())
constructor′ d ≟ primitive′ = no (λ ())
axiom ≟ function cs = no (λ ())
axiom ≟ data-type pars cs = no (λ ())
axiom ≟ record′ c fs = no (λ ())
axiom ≟ constructor′ d = no (λ ())
axiom ≟ primitive′ = no (λ ())
primitive′ ≟ function cs = no (λ ())
primitive′ ≟ data-type pars cs = no (λ ())
primitive′ ≟ record′ c fs = no (λ ())
primitive′ ≟ constructor′ d = no (λ ())
primitive′ ≟ axiom = no (λ ())